Skip to main content

Advertisement

Log in

The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Study design

Experimental spinal cord injury.

Objective

To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury.

Method

We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0–14 point scale open field test.

Results

Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 ± 2.0 (mean ± standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1–3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level.

Conclusion

We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuhar MJ, Roth RH, Aghajanian GK (1972) Synaptosomes from forebrains of rats with midbrain raphe lesions: selective reduction of serotonin uptake. J Pharmacol Exp Ther 181:36–45

    PubMed  CAS  Google Scholar 

  2. O’reilly CA, Reith ME (1985) Uptake of [3H]serotonin into plasma membrane vesicles from mouse cerebral cortex. J Biol Chem 263:6115–6121

    Google Scholar 

  3. Saruhashi Y, Young W, Hassan AZ, Park R (1994) Excitatory and inhibitory effects of srotonin on spinal axons. Neurosci 61:645–653. doi:10.1016/0306-4522(94)90441-3

    Article  CAS  Google Scholar 

  4. Saruhashi Y et al (1997) Evidence for serotonin sensitivity of adult rat spinal axons: Studies using randomized double pulse stimulation. Neurosci 80:559–566. doi:10.1016/S0306-4522(96)00708-7

    Article  CAS  Google Scholar 

  5. Saruhashi Y, Young W, Hassan AZ (1997) Calcium-mediated intracellular messengers modulate the serotonergic effects on axonal excitability. Neurosci 81:959–965. doi:10.1016/S0306-4522(97)00219-4

    Article  CAS  Google Scholar 

  6. Saruhashi Y, Matsusue Y, Hukuda S (2002) Effects of serotonin 1A agonist on acute spinal cord injury. Spinal Cord 40:519–523. doi:10.1038/sj.sc.3101331

    Article  PubMed  CAS  Google Scholar 

  7. Puniak MA et al (1991) Comparison of a serotonin antagonist, opioid antagonist, and TRH analog for the acute treatment of experimental spinal trauma. J Neurotrauma 8:193–203

    Article  PubMed  CAS  Google Scholar 

  8. Salzman SK et al (1987) Treatment of experimental spinal trauma with thyrotropin-releasing hormone: central serotonergic and vascular mechanisms of action. Cent Nerv Syst Trauma 4:181–196

    PubMed  CAS  Google Scholar 

  9. Salzman SK et al (1987) Monoaminergic responses to spinal trauma. Participation of serotonin in posttraumatic progression of neural damage. J Neurosurg 66:431–439

    Article  PubMed  CAS  Google Scholar 

  10. Salzman SK, Mendez AA, Dabney KWl (1991) Serotonergic response to spinal distraction trauma in experimental scoliosis. J Neurotrauma 8:45–54

    Article  PubMed  CAS  Google Scholar 

  11. Salzman SK et al (1991) The serotonin antagonist mianserin improves functional recovery following experimental spinal trauma. Ann Neurol 30:533–541. doi:10.1002/ana.410300405

    Article  PubMed  CAS  Google Scholar 

  12. Crown ED, Grau JW (2005) Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation. Exp Neurol 196:164–176. doi:10.1016/j.expneurol.2005.07.016

    Article  PubMed  CAS  Google Scholar 

  13. Hains BC, Willis WD, Hulsebosch CE (2003) Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat. Exp Brain Res 149:174–186

    PubMed  CAS  Google Scholar 

  14. Salzman SK et al (1987) Spinal cord immunoreactive TRH is altered after local traumatic injury. Peptides 8:247–250. doi:10.1016/0196-9781(87)90098-2

    Article  PubMed  CAS  Google Scholar 

  15. Faden AI, Gannon A, Basbaum AI (1988) Use of serotonin immunocytochemistry as a marker of injury severity after experimental spinal trauma in rats. Brain Res 450:94–100. doi:10.1016/0006-8993(88)91548-X

    Article  PubMed  CAS  Google Scholar 

  16. Salzman SK et al (1988) The somatosensory evoked potential predicts neurologic deficits and serotonergic pathochemistry after spinal distraction injury in experimental scoliosis. J Neurotrauma 5:173–186

    Article  PubMed  CAS  Google Scholar 

  17. Faden AI, Ellison JA, Noble LJ (1990) Effects of competitive and non-competitive NMDA receptor antagonists in spinal cord injury. Eur J Pharmacol 175:165–174. doi:10.1016/0014-2999(90)90227-W

    Article  PubMed  CAS  Google Scholar 

  18. Saruhashi Y, Hukuda S, Maeda T (1991) Evidence for a neural source of acute accumulation of serotonin in platelets in the injured spinal cord of rats. An experimental study using 5,6-dihydroxytryptamine treatment. J Neurotrauma 8:121–128

    Article  PubMed  CAS  Google Scholar 

  19. Beattie MS, Bresnahan JC (1989) Longitudinal assessment of locomotor recovery in rats with spinal cord impact lesions. In: Brown M, Golderger M, Bregman B, Vierck C (eds) Criteria for the assessment of recovery of function: behavioral methods. American Paralysis Association, Springfield, pp 16–25

    Google Scholar 

  20. Behrmann DL, Bresnahan JC, Beattie MS (1992) A comparison of YM-14673, U-50488H, and nalmefene after spinal cord injury in the rat. Exp Neurol 119:258–267. doi:10.1006/exnr.1993.1028

    Article  Google Scholar 

  21. Behrmann DL, Bresnahan JC, Beattie MS, Shah BR (1992) Spinal cord injury produced by consistent mechanical displacement of the cord in rats: Behavioral and histologic analysis. J Neurotrauma 9:197–217

    Article  PubMed  CAS  Google Scholar 

  22. Saruhashi Y, Young W (1994) Effect of mianserin on locomotory function after thoracic spinal cord hemisection in rats. Exp Neurol 129:207–216. doi:10.1006/exnr.1994.1162

    Article  PubMed  CAS  Google Scholar 

  23. Takeuchi Y, Kimura H, Sano Y (1982) Immunohistochemical demonstration of serotonin neurons in brainstem of the rat and cat. Cell Tissue Res 224:246–267. doi:10.1007/BF00216872

    Article  Google Scholar 

  24. Kimura H, Mcgeer PL, Peng JH, Mcgeer EG (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J Comp Neurol 200:151–201. doi:10.1002/cne.902000202

    Article  PubMed  CAS  Google Scholar 

  25. Yamamoto H, Fujimiya M, Shirai Y, Nakashita M, Saito N (1998) Immunohistochemical localization of serotonin transporter in normal and colchicines treated rat brain. Neurosci Res 32:305–312. doi:10.1016/S0168-0102(98)00097-2

    Article  PubMed  CAS  Google Scholar 

  26. Liu DX, Valadez V, Sorkin LS, McAdoo DJ (1990) Norepinephrine and serotonin release upon impact injury to rat spinal cord. J Neurotrauma 7:219–227

    Article  PubMed  CAS  Google Scholar 

  27. Sorkin LS, Steinman JL, Hughes MG, Willis WD, McAdoo DJ (1988) Microdialysis recovery of serotonin released in spinal cord dorsal horn. J Neurosci Meth 23:131–138. doi:10.1016/0165-0270(88)90185-9

    Article  CAS  Google Scholar 

  28. Sorkin LS, Hughes MG, Liu D, Willis WDJ, McAdoo DJ (1991) Release and metabolism of 5-hydroxytryptamine in the cat spinal cord examined with microdialysis. J Pharmacol Exp Ther 257:192–199

    PubMed  CAS  Google Scholar 

  29. Saruhashi Y, Hukuda S, Maeda T (1990) Acute aggregation of serotonin-immunoreactive platelets in the injured spinal cord of rat and change of serotonin content in the neural fibers. J Neurotrauma 7:237–246

    Article  PubMed  CAS  Google Scholar 

  30. Brodner RA, Dohrman GJ, Roth RH, Rubin RA (1980) Correlation of cerebrospinal fluid serotonin and altered spinal cord blood flow in experimental trauma. Surg Neurol 13:337–343

    PubMed  CAS  Google Scholar 

  31. Abraham JA, Balasubramanian S, Theodore DR, Nagarajan S, Apte CA, Chandi S (1985) Spinal cord edema, 5-hydroxytryptamine, lipid peroxidation, and lysosomal enzyme release after acute contusion and compression injury in primates. Cent Nerv Syst Trauma 2:45–60

    PubMed  CAS  Google Scholar 

  32. Sharma HS, Olsson Y, Dey PK (1990) Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes. Neuroscience 36:725–730. doi:10.1016/0306-4522(90)90014-U

    Article  PubMed  CAS  Google Scholar 

  33. Sharma HS, Westman JS, Olsson Y, Johansson O, Dey PK (1990) Increased 5-hydroxytryptamine immunoreactivity in traumatized spinal cord. An experimental study in the ract. Acta Neuropathol 80:12–17. doi:10.1007/BF00294216

    Article  PubMed  CAS  Google Scholar 

  34. Zivin JA, Venditto JA (1984) Experimental CNS ischemia: serotonin antagonists reduce or prevent damage. Neurology 3:469–474

    Google Scholar 

  35. Saruhashi Y, Young W, Perkins R (1996) The recovery of 5-HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection. Exp Neurol 139:203–213. doi:10.1006/exnr.1996.0094

    Article  PubMed  CAS  Google Scholar 

  36. Hashimoto T, Fukuda N (1991) Contribution of serotonin neurons to the functional recovery after spinal cord injury in rats. Brain Res 539:263–270. doi:10.1016/0006-8993(91)91630-J

    Article  PubMed  CAS  Google Scholar 

  37. Hounsgaard J, Hultborn H, Jespersen B, Kiehn O (1988) Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol 405:345–367

    PubMed  CAS  Google Scholar 

  38. Jackson DA, White SR (1990) Receptor subtypes mediating facilitation by serotonin of excitability of spinal motoneurons. Neuropharmacology 29:787–797. doi:10.1016/0028-3908(90)90151-G

    Article  PubMed  CAS  Google Scholar 

  39. Lai YY, Strahlendorf HK, Fung SJ, Barnes CD (1989) The actions of two monoamines on spinal motoneurons from stimulation of the locus coeruleus in the cat. Brain Res 484:268–272. doi:10.1016/0006-8993(89)90369-7

    Article  PubMed  CAS  Google Scholar 

  40. White SR, Fung SJ (1989) Serotonin depolarizes cat spinal motoneurons in situ and decreases motoneuron afterhyperpolarizing potentials. Brain Res 502:205–213. doi:10.1016/0006-8993(89)90615-X

    Article  PubMed  CAS  Google Scholar 

  41. Yomono HS, Suzuki H, Yoshioka K (1992) Serotonergic fibers induce a long-lasting inhibition of monosynaptic reflex in the neonatal rat spinal cord. Neuroscience 47:521–531. doi:10.1016/0306-4522(92)90162-U

    Article  PubMed  CAS  Google Scholar 

  42. Barbeau H, Rossignol S (1990) The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res 514:55–67. doi:10.1016/0006-8993(90)90435-E

    Article  PubMed  CAS  Google Scholar 

  43. Barbeau H, Rossignol S (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 546:250–260. doi:10.1016/0006-8993(91)91489-N

    Article  PubMed  CAS  Google Scholar 

  44. Anderson EG (1983) The serotonin system of the spinal cord. In: Davidoff RA (ed) Handbook of the spinal cord. Marcel Bekker, New York, pp 241–274

    Google Scholar 

  45. Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat cell bodies and terminals. Neuroscience 6:557–618. doi:10.1016/0306-4522(81)90146-9

    Article  PubMed  CAS  Google Scholar 

  46. Krukoff TL, Ciriello J, Calaresu FR (1985) Segmental distribution of peptide- and 5HT-like immunoreactivity in nerve terminals and fibers of the thoracolumbar sympathetic nuclei of the cat. J Comp Neuro 240:103–116. doi:10.1002/cne.902400108

    Article  CAS  Google Scholar 

  47. Newton BW, Hamill RW (1988) The morphology and distribution of rat serotoninergic intraspinal neurons: an immunohistochemical study. Brain Res Bull 20:349–360. doi:10.1016/0361-9230(88)90064-0

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Saruhashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saruhashi, Y., Matsusue, Y. & Fujimiya, M. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord. Arch Orthop Trauma Surg 129, 1279–1285 (2009). https://doi.org/10.1007/s00402-008-0754-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0754-z

Keywords

Navigation