Skip to main content

Advertisement

Log in

The extent of laceration of circumferential fibers with suture repair of the knee meniscus

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Cannulas used with suture based meniscal repair techniques can potentially injure the load transmitting fibers of the meniscus. The subject of this study was to quantify this effect in a porcine in vitro model.

Materials and methods

From fresh frozen medial porcine menisci tissue specimens were harvested following the course of the peripheral circumferential fibers bundles. In the first part of the study the tissue samples were perforated with the cannulas of either a Fast Fix or a Rapidloc device or with an 18-gauge needle. The specimens were then visually inspected for fiber damage using low power microscopy and the mean size of the laceration was measured. Finally, the extent of the tissue laceration was indirectly determined using non-contact strain measurements of the samples before and after puncture.

Results

When advanced with the cutting edge perpendicular to the fibers, the cannulas consistently cut the fibers while those were rather separated with the opposite orientation. It could be shown that specimens with a mean width of 8.1 mm lost 25% of the load transmitting cross section when being perforated two times with a Fast Fix device (P < 0.001). This effect is negated when the cannula was oriented in line with the fibers.

Conclusions

Cannulas used for suture based meniscal repair can cause a substantial laceration of the meniscal tissue. The effect strongly depends on the orientation of the cutting edge of the cannula relative to the course of the fibers and can thus potentially be avoided by an appropriate handling and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson K, Marx RG, Hannafin J, Warren RF (2000) Chondral injury following meniscal repair with a biodegradable implant. Arthroscopy 16:749–753

    Article  PubMed  CAS  Google Scholar 

  2. Aspden RM, Yarker YE, Hukins DW (1985) Collagen orientations in the meniscus of the knee joint. J Anat 140(Pt 3):371–380

    PubMed  Google Scholar 

  3. Becker R, Schroder M, Starke C, Urbach D, Nebelung W (2001) Biomechanical investigations of different meniscal repair implants in comparison with horizontal sutures on human meniscus. Arthroscopy 17:439–444

    Article  PubMed  CAS  Google Scholar 

  4. Becker R, Starke C, Heymann M, Nebelung W (2002) Biomechanical properties under cyclic loading of seven meniscus repair techniques. Clin Orthop 236–245

  5. Boenisch UW, Faber KJ, Ciarelli M, Steadman JR, Arnoczky SP (1999) Pull-out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures. Am J Sports Med 27:626–631

    PubMed  CAS  Google Scholar 

  6. Borden P, Nyland J, Caborn DN, Pienkowski D (2003) Biomechanical comparison of the Fast-Fix meniscal repair suture system with vertical mattress sutures and meniscus arrows. Am J Sports Med 31:374–378

    PubMed  Google Scholar 

  7. Dervin GF, Downing KJ, Keene GC, McBride DG (1997) Failure strengths of suture versus biodegradable arrow for meniscal repair: an in vitro study. Arthroscopy 13:296–300

    Article  PubMed  CAS  Google Scholar 

  8. Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure–function relationships in the menisci. Clin Orthop Relat Res 19–31

  9. Fox JM, Rintz KG, Ferkel RD (1993) Trephination of incomplete meniscal tears. Arthroscopy 9:451–455

    Article  PubMed  CAS  Google Scholar 

  10. Jones RS, Keene GC, Learmonth DJ, Bickerstaff D, Nawana NS, Costi JJ, Pearcy MJ (1996) Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech 11(5):295–300

    Article  Google Scholar 

  11. Menetrey J, Seil R, Rupp S, Fritschy D (2002) Chondral damage after meniscal repair with the use of a bioabsorbable implant. Am J Sports Med 30:896–899

    PubMed  Google Scholar 

  12. Miller MD, Kline AJ, Gonzales J, Beach WR (2002) Pitfalls associated with Fast-Fix meniscal repair. Arthroscopy 18:939–943

    Article  PubMed  Google Scholar 

  13. Narmoneva DA, Wang JY, Setton LA (1999) Nonuniform swelling-induced residual strains in articular cartilage. J Biomech 32(4):401–408

    Article  PubMed  CAS  Google Scholar 

  14. Newman AP, Anderson DR, Daniels AU, Dales MC (1989) Mechanics of the healed meniscus in a canine model. Am J Sports Med 17:164–175

    Article  PubMed  CAS  Google Scholar 

  15. Petersen W, Tillmann B (1998) Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl) 197:317–324

    Article  CAS  Google Scholar 

  16. Provenzano PP, Hayashi K, Kunz DN, Markel MD, Vanderby R Jr (2002) Healing of subfailure ligament injury: comparison between immature and mature ligaments in a rat model. J Orthop Res 20:975–983

    Article  PubMed  Google Scholar 

  17. Provenzano PP, Hurschler C, Vanderby R Jr (2001) Microstructural morphology in the transition region between scar and intact residual segments of a healing rat medial collateral ligament. Connect Tissue Res 42:123–133

    Article  PubMed  CAS  Google Scholar 

  18. Provenzano PP, Vanderby R Jr (2006) Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25:71–84

    Article  PubMed  CAS  Google Scholar 

  19. Rankin CC, Lintner DM, Noble PC, Paravic V, Greer E (2002) A biomechanical analysis of meniscal repair techniques. Am J Sports Med 30:492–497

    PubMed  Google Scholar 

  20. Rankin M, Noyes FR, Barber-Westin SD, Hushek SG, Seow A (2006) Human meniscus allografts’ in vivo size and motion characteristics: magnetic resonance imaging assessment under weightbearing conditions. Am J Sports Med 34:98–107

    Article  PubMed  Google Scholar 

  21. Song EK, Lee KB (1999) Biomechanical test comparing the load to failure of the biodegradable meniscus arrow versus meniscal suture. Arthroscopy 15:726–732

    Article  PubMed  CAS  Google Scholar 

  22. Sweigart MA, Athanasiou KA (2005) Biomechanical characteristics of the normal medial and lateral porcine knee menisci. Proc Inst Mech Eng [H] 219:53–62

    CAS  Google Scholar 

  23. Sweigart MA, Zhu CF, Burt DM, deHoll PD, Agrawal CM, Clanton TO, Athanasiou KA (2004) Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng 32:1569

    Article  PubMed  CAS  Google Scholar 

  24. Thornton GM, Leask GP, Shrive NG, Frank CB (2000) Early medial collateral ligament scars have inferior creep behaviour. J Orthop Res 18:238–246

    Article  PubMed  CAS  Google Scholar 

  25. Walsh SP, Evans SL, O’Doherty DM, Barlow IW (2001) Failure strengths of suture vs. biodegradable arrow and staple for meniscal repair: an in vitro study. Knee 8:151–156

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Staerke.

Additional information

This study is a Winner of the AGA DonJoy award 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staerke, C., Kopf, S. & Becker, R. The extent of laceration of circumferential fibers with suture repair of the knee meniscus. Arch Orthop Trauma Surg 128, 525–530 (2008). https://doi.org/10.1007/s00402-007-0533-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0533-2

Keywords

Navigation