Skip to main content

Advertisement

Log in

Amphiphilic bonder improves adhesion at the acrylic bone cement–bone interface of cemented acetabular components in total hip arthroplasty: in vivo tests in an ovine model

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Even following the introduction of the “third generation” cementing technique, an improvement of the fixation of the acetabular component similar to that of the femoral has not been shown in clinical studies. The goal of the present study was to achieve a better stability with the use of an amphiphilic bonder while preserving the mechanically important subchondral sclerosis.

Materials and methods

In a total of 20 sheep, a cemented total hip replacement was implanted. In the treatment group (n = 10), the implantation was carried out following surface conditioning of the acetabular bed with an amphiphilic bonder. All the sheep were followed for 9 months. To assess the biocompatibility, the osseous ingrowth at the cement–bone interface was depicted with the help of an in vivo fluorescent marking of the osteoblasts. Additionally, conventional radiographs were obtained over the course of treatment. Finally, the ovine pelvic regions were split following a standardized technique allowing for histological evaluation of the cement–bone interfaces.

Results

The acetabular components of the treatment group revealed a stable cement–bone compound. In the control group, the implants were easily dislodged from their beds. This finding was consistent with the radiological and histological results, which had revealed increased, progressive lytic radiolucent lines and the interposition of fibrous tissue at the cement–bone interface in the control group compared to the treatment group. The bonder was biocompatible.

Conclusion

Following the application of the bonder, the cemented acetabular components revealed an improved stability without signs of inflammation or neoplasia in a viable acetabular osseous bed. With the help of this technique, the in vivo longevities of cemented acetabular components can be increased in the clinical setting without sacrificing the biomechanical relevant subchondral sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergmann G, Graichen F, Rohlmann A (1999) Hip joint forces in sheep. J Biomech 32:769–777

    Article  PubMed  CAS  Google Scholar 

  2. Breusch SJ, Berghof R, Schneider U, Weiß G, Simank HG, Lukoschek M, Ewerbeck V (1999) Der Stand der Zementiertechnik bei Hüfttotalendoprothesen in Deutschland. Z Orthop 137:101–107

    PubMed  CAS  Google Scholar 

  3. Breusch SJ, Schneider U, Kreutzer J, Ewerbeck V, Lukoschek M (2000) Einfluß der Zementiertechnik auf das Zementierergebnis am koxalen Femurende. Orthopäde 29:260–270

    PubMed  CAS  Google Scholar 

  4. Brumby SA, Howie DW, Pearcy MJ, Wang AW, Nawana NS (1998) Radiographic and histologic analysis of cemented double tapered femoral stems. Clin Orthop Rel Res 355:229–237

    Article  Google Scholar 

  5. DeLee JG, Charnley J (1976) Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop 121:20–32

    PubMed  Google Scholar 

  6. Ebramzadeh E, Normand PL, Sangiorgio SN; Llinas A, Gruen TA, McKellop HA, Sarmiento A (2003) Long-term radiographicchanges in cemented total hip arthroplasty with six designs of femoral components. Biomaterials 24:3351–3363

    Article  PubMed  CAS  Google Scholar 

  7. Eftekhar NS, Nercessian O (1988) Incidence and mechanism of failure of cemented acetabular component in total hip arthroplasty. Orthop Clin North Am 19:557–566

    PubMed  CAS  Google Scholar 

  8. Engh CA, Griffin WL, Marc CL (1990) Cementless acetabular components. J Bone Joint Surg Br 72:53–59

    PubMed  CAS  Google Scholar 

  9. Erli HJ, Marx R, Paar O, Niethard FU, Weber M, Wirtz DC (2003) Surface pretreatments for medical application of adhesion. Biomed Eng Online 18:15

    Article  Google Scholar 

  10. Garcia-Cimberlo E, Munuera L, Diez-Vazquez V (1995) Long-term results of aseptic cemented Charnley revisions. J Arthroplasty 10:121–131

    Article  Google Scholar 

  11. Garcia-Cimbrelo E, Vazquez V, Madero R, Munuera L (1997) Progression of radiolucent lines adjacent to the acetabular component and factors influencing migration after Charnley low-friction total hip arthroplasty. J Bone Joint Surg 79-A:1373–1380

    Google Scholar 

  12. Griss P (1998) Hybrid total hip arthroplasty. In: Sedel J, Cabanela ME (eds) Hip surgery materials and developments. Martin Dunitz Ltd., London

    Google Scholar 

  13. Harris WH (1992) Is it advantageous to strengthen the cement–metal interface and use a collar for cemented femoral components of total hip replacements? Clin Orthop 285:67–72

    PubMed  Google Scholar 

  14. Huiskes R (1993) Failed innovation in total hip replacement diagnosis and proposal for cure. Acta Orthop Scand 64:699–716

    Article  PubMed  CAS  Google Scholar 

  15. Karrholm J, Snorrason F (1993) Subsidence, tip, and hump micromovements of noncoated ribbed femoral prostheses. Clin Orthop Relat Res 287:50–60

    PubMed  Google Scholar 

  16. Kavanagh BF, Ilstrup DM, Fitzgerald RH (1985) Revision total hip arthroplasty. J Bone Joint Surg Am 67:517–526

    PubMed  CAS  Google Scholar 

  17. Kobayashi S, Terayama K (1990) Radiology of low-friction arthroplasty. A comparison of socket fixation techniques. J Bone Joint Surg Br 72:439–443

    PubMed  CAS  Google Scholar 

  18. Linder L, Carlsson AS (1986) The bone–cement interface in hip arthroplasty: a histologic and enzyme study of stable components. Act Orthop Scand 57:495–500

    Article  CAS  Google Scholar 

  19. Malchau H, Soderman P, Herberts P (2000) Swedish hip registry: results with 20-year follow-up with validation clinically and radiographically. 67th annual meeting of the AAOS, Orlando

    Google Scholar 

  20. Marx R, Fischer H. Werkstück und Verfahren zum Herstellen und zum Verwerten des Werkstücks. München: Patentanmeldung PCT/DE 00/02702, 2000

  21. Marx R, Weber M (2001) Vollkeramische Kronen- und Brückenmaterialien-Eigenschaften und Anforderungen. Eigenverlag F&E-Labor Medizinische Werkstoffe RWTH Aachen, Aachen

    Google Scholar 

  22. Massin P, Vandenbussche E, Landjerit B, Augereau B (1996) Experimental study of periacetabular deformations before and after implantation of hip prostheses. J Biomech 29:53–61

    Article  PubMed  CAS  Google Scholar 

  23. Mulroy WF, Harris WH (1996) Revision total hip arthroplasty with use of so-called second-generation cementing techniques for aseptic loosening of the femoral component: a fifteen years-average follow-up-study. J Bone Joint Surg Am 78:325–330

    PubMed  CAS  Google Scholar 

  24. Mumme T, Gravius S, Andereya S, Marx R, Wirtz DC, Müller-Rath R (2007) Improvement of the long-term adhesive strength between bone cement and bone in cemented cup arthroplasty. Arch Orthop Traum Surg 11 (Epub ahead of print)

  25. Nakabayashi N, Pashley DH (1998) Hybridization of dental hard tissues. Quintessence Books, Tokyo

    Google Scholar 

  26. Nunn D, Freeman MA, Hill PF, Evans SJ (1989) The measurement of migration of the acetabular component of hip prostheses. J Bone Joint Surg Br 71:629–631

    PubMed  CAS  Google Scholar 

  27. Phillips TW, Johnston G, Wood P (1987) Selection of an animal model for resurfacing hip arthroplasty. J Arthroplasty 2:111–117

    Article  PubMed  CAS  Google Scholar 

  28. Ratanasathien S, Wataha JC, Hanks CT, Dennison JB (1995) Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 74:1602–1606

    PubMed  CAS  Google Scholar 

  29. Smith SE, Estok DM, Harris WH (2000) 20-year experience with cemented primary and conversion total hip arthroplasty using so-called second generation cementing techniques in patients aged 50 years or younger. J Arthroplasty 15:263–273

    Article  PubMed  CAS  Google Scholar 

  30. Sochart DH, Porter ML (1997) The long-term results of Charnley low-friction arthroplasty in young patients who have congenital dislocation, degenerative osteoarthritis, or rheumatoid arthritis. J Bone Joint Surg Am 79:1599–1617

    PubMed  CAS  Google Scholar 

  31. Waide V, Cristofolini L, Toni A (2004) An experimental analogue to model fibrous tissue layer in cemented hip replacements. J Biomed Mater Res Part B Appl Biomater 69B:232–240

    Article  CAS  Google Scholar 

  32. Wetherell RG, Amis AA, Heatley FW (1989) Measurement of acetabular erosion: the effect of pelvic rotation on common landmarks. J Bone Joint Surg Br 71:447–451

    PubMed  CAS  Google Scholar 

  33. Wirtz DC, Lelgemann B, Jungwirth F, Niethard FU, Marx R (2003) A new method to optimize the adhesion between bone cement and acetabular bone in total hip arthroplasty. Z Orthop 141:209–216

    Article  PubMed  CAS  Google Scholar 

  34. Wirtz DC, Niethard FU (1997) Ursachen, Diagnostik und Therapie der aseptischen Hüftendoprothesenlockerung-eine Standortbestimmung. Z Orthop 135:270–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Müller-Rath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Rath, R., Wirtz, D.C., Siebert, C.H. et al. Amphiphilic bonder improves adhesion at the acrylic bone cement–bone interface of cemented acetabular components in total hip arthroplasty: in vivo tests in an ovine model. Arch Orthop Trauma Surg 128, 701–707 (2008). https://doi.org/10.1007/s00402-007-0408-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0408-6

Keywords

Navigation