Skip to main content

Advertisement

Log in

The effect of different mineral frames on ectopic bone formation in mouse hind leg muscles induced by native reindeer bone morphogenetic protein

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Bone morphogenetic proteins (BMPs) require carrier material for slow release and framing material for osteoconduction.

Materials and methods

The effect of a frame on early bone formation induced by partially purified native reindeer BMP in composite implants containing 3 mg of BMP, type IV collagen and tricalcium phosphate (TCP/Col/BMP) or hydroxyapatite (HA/Col/BMP) or biphasic tricalcium phosphate-hydroxyapatite (TCP/HA/Col/BMP) or biocoral (NC/Col/BMP) was evaluated using a mouse hind leg muscle pouch model. Collagen with native reindeer BMP (Col/BMP) and corresponding implants without native reindeer BMP served as controls. Evaluation was done by incorporation of 45Ca, radiographically and histologically 3 weeks after the implantation.

Results

None of the implants without native reindeer BMP were able to induce new bone visible on radiographs. The area of new bone formation in the Col/BMP (p=0.026) and TCP/HA/Col/BMP (p=0.012) groups was significantly greater than in the TCP/Col/BMP group. The optical density of the new bone area was significantly greater in the TCP/HA/Col/BMP group than in the TCP/Col/BMP (p=0.036) or Col/BMP (p=0.02) groups. 45Ca incorporation was many times greater in all the groups containing native reindeer BMP than in the corresponding groups without BMP. In the Col/BMP (p=0.046) and TCP/HA/Col/BMP (p=0.046) groups, 45Ca incorporation was significantly greater than in the TCP/Col/BMP group. No significant differences were found in any parameters between HA/Col/BMP and NC/Col/BMP groups and the other BMP-containing groups.

Conclusions

Hydroxyapatite, biocoral and biphasic tricalciumphosphate-hydroxyapatite are equally good as framing material for native reindeer BMP, while tricalciumphosphate is somewhat worse. Osteoinduction of native reindeer BMP works well with collagen alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A–E

Similar content being viewed by others

References

  1. Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S (2001) Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 22:1643–1651

    Article  CAS  PubMed  Google Scholar 

  2. Arnaud E, Pollack C, Meunier A, Sedel L, Damien C, Petite H (1999) Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 20:1909–1918

    Article  CAS  PubMed  Google Scholar 

  3. David SM, Gruber HE, Meyer RA Jr, Murakami T, Tabor OB, Howard BA, Wozney JM, Hanley EN Jr (1999) Lumbar spinal fusion using recombinant human bone morphogenetic protein in the canine. A comparison of three dosages and two carriers. Spine 24:1973–1979

    Article  CAS  PubMed  Google Scholar 

  4. Ebara S, Nakayama K (2002) Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine 27:10–15

    Article  Google Scholar 

  5. Gao TJ, Tuominen TK, Lindholm S, Kommonen B, Lindholm TC (1997) Morphological and biomechanical differences in healing in segmental tibial defects implanted with biocoral or tricalcium phosphate cylinders. Biomaterials 18:219–223

    Article  CAS  PubMed  Google Scholar 

  6. Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC, Jalovaara P, Urist MR (1997) A coral composite implant containing bone morphogenetic protein repairs a segmental tibial defect in sheep: mechanics and immune assay. Int Orthop 21:194–200

    Article  CAS  PubMed  Google Scholar 

  7. Gao TJ, Lindholm TS, Marttinen A, Puolakka T (1993) Bone inductive potential and dose-dependent response of bovine bone morphogenetic protein combined with type IV collagen carrier. Ann Chir Gyn 82:77–84

    Google Scholar 

  8. Gao TJ, Lindholm TS, Marttinen A, Urist MR (1996) Composite of bone morphogenetic protein (BMP) and type IV collagen, coral-derived coral hydroxyapatite and tricalcium phosphate ceramics. Int Orthop 20:321–325

    Article  CAS  PubMed  Google Scholar 

  9. Jin QM, Takita H, Kohgo T, Atsumi K, Itoh H, Kuboki Y (2000) Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. J Biomed Mater Res 51:491–499

    Article  CAS  PubMed  Google Scholar 

  10. Johnson EE, Urist MR (2000) Human bone morphogenetic protein allografting for reconstruction of femoral non-union. Clin Orthop 371:61–74

    Article  PubMed  Google Scholar 

  11. Johnson EE, Urist MR (1998) One stage lengthening of femoral nonunion augmented with human bone morphogenetic protein. Clin Orthop 347:105–116

    Article  PubMed  Google Scholar 

  12. Jortikka L, Marttinen A, Lindholm TS (1993) Purification of monocomponent bovine morphogenetic protein in a water-soluble form. Ann Chir Gyn 82:25–30

    Google Scholar 

  13. Kawamura M, Iwata H, Sato K, Miura T (1987) Chondroosteogenetic response to crude bone matrix proteins bound to hydroxyapatite. Clin Orthop 217:281–292

    CAS  PubMed  Google Scholar 

  14. Klawitter JJ, Hulbert SF (1971) Application of porous ceramics for attachment of load bearing internal orthopedic applications. J Biomed Mater Res 2:161–229

    Google Scholar 

  15. Kujala S, Raatikainen T, Ryhänen J, Kaarela O, Jalovaara P (2002) Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions—a preliminary study. Scand J Surg 9:186–190

    Google Scholar 

  16. Laffrague P, Hildebrand HF, Rtaimate M, Frayssinet P, Amoureux JP, Marchandise (1999) Evaluation of human recombinant bone morphogenetic protein-2-loaded tricalcium phosphate implants in rabbits’ bone defect. Bone 25:55–58

    Article  CAS  PubMed  Google Scholar 

  17. Lindholm TS, Gao TJ (1993) Functional carriers for bone morphogenetic proteins. Ann Chir Gyn 82:3–12

    Google Scholar 

  18. Murata M, Huang BZ, Shibata T, Imai S, Nagai N, Arisue M (1999) Bone augmentation by recombinant human BMP-2 and collagen on adult rat parietal bone. Int Oral Maxillofac Surg 28:232–237

    Article  CAS  Google Scholar 

  19. Nakahara H, Takaoka K, Koezuka M, Sugamoto K, Tsuda T, Ono K (1989) Periosteal bone formation elicited by partially purified BMP. Clin Orthop 239:299–305

    PubMed  Google Scholar 

  20. Noshi T, Yoshikawa T, Ikeuchi M, Dohi Y, Ohgushi H, Horiuchi K, Sugimura M, Ichijima K, Yonemasu K (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein. J Biomed Mater Res 52:621–630

    Article  CAS  PubMed  Google Scholar 

  21. Okubo Y, Bessho K, Fujimura K, Kusumoto K, Ogawa Y, Izuka T (2000) Osteogenesis by recombinant human bone morphogenetic protein-2 at skeletal sites. Clin Orthop 375:295–301

    Article  PubMed  Google Scholar 

  22. Paralkar VM, Weeks BS, Yu YM, Leinman HK, Reddi AH (1992) Recombinant human bone morphogenetic protein 2B stimulates PC 12 cell differentiation: potentiation and binding to type IV collagen. J Cell Biol 119:1721–1728

    Article  CAS  PubMed  Google Scholar 

  23. Reddi AH (1992) Regulation of cartilage and bone differentiation by bone morphogenetic protein. Curr Opin Cell Biol 4:850–855

    Article  CAS  PubMed  Google Scholar 

  24. Reddi AH (1981) Cell biology and biochemistry of endochondral bone development. Coll Relat Res 1:209–226

    CAS  PubMed  Google Scholar 

  25. Sailer HF, Kolb E (1994) Application of purified bone morphogenetic protein (BMP) in cranio-maxillo-facial surgery. BMP in compromised surgical reconstructions using titanium implants. J CranioMaxillofac Surg 22:2–11

    CAS  Google Scholar 

  26. Sheerman H, Wozney J, Li R (2002) Bone morphogenetic protein delivery systems. Spine 27:16–23

    Article  Google Scholar 

  27. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324

    CAS  PubMed  Google Scholar 

  28. Tuominen T, Jämsä T, Tuukkanen J, Nieminen P, Lindholm TC, Lindholm TS, Jalovaara P (2000) Native bone morphogenetic protein improves the potential of biocoral to heal bone segmental canine ulnar defects. Int Orthop 24:289–294

    Article  CAS  PubMed  Google Scholar 

  29. Urist MR (1965) Bone formation by autoinduction. Science 150:893–899

    CAS  PubMed  Google Scholar 

  30. Urist MR, Lietze A, Dawson E (1984) Beta-tricalcium phosphate delivery system for bone morphogenetic protein. Clin Orthop 187:277–280

    CAS  PubMed  Google Scholar 

  31. Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel G (2002) Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop 395:110–120

    PubMed  Google Scholar 

  32. Wozney J (2002) Overview of bone morphogenetic proteins. Spine 27(16S):2–8

    Article  Google Scholar 

  33. Yudell RM, Block MS (2000) Bone gap healing in the dog using recombinant human bone morphogenetic-2. J Oral Maxillofac Surg 58:761–766

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to profusely thank Mrs Anna-Liisa Siponen and Mr Aulis Marttinen in the Laboratory of the Department of Clinical Medicine, University of Tampere, for their kind assistance with the nucleic techniques and Bioactive Bone Substitutes Ltd, Oulu, Finland. The experiment complies with the current laws of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jalovaara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pekkarinen, T., Lindholm, T.S., Hietala, O. et al. The effect of different mineral frames on ectopic bone formation in mouse hind leg muscles induced by native reindeer bone morphogenetic protein. Arch Orthop Trauma Surg 125, 10–15 (2005). https://doi.org/10.1007/s00402-004-0761-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-004-0761-7

Keywords

Navigation