Skip to main content

Advertisement

Log in

Sagittal laxity in vivo after total knee arthroplasty

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Introduction

A stress arthrometry study of 77 knees undergoing total knee arthroplasty was performed to determine the difference in anteroposterior (AP) laxity between posterior cruciate ligament (PCL)-retaining (PCLR) and PCL-substituting (PCLS) prostheses using the Genesis I TKA.

Materials and methods

Fifty-three knees had PCLR and 24 had PCLS prostheses. The selected patients had successful arthroplasties after a minimum follow-up of 5 years. AP laxity was measured with a KT-2000 arthrometer (Medmetric, San Diego, CA, USA) using standard protocols.

Results

At 30° of flexion, there was no statistical difference in anterior (PCLR: 4.7 mm, PCLS: 4.5 mm), posterior (PCLR: 1.1 mm, PCLS: 0.7 mm), or total (PCLR: 5.8 mm, PCLS: 5.3 mm) displacement. At 75°, significant differences were seen in both anterior (PCLR: 3.3 mm, PCLS: 2.3 mm) and total (PCLR: 4.8 mm, PCLS: 3.4 mm) displacement (p=0.001 and p=0.009, respectively), although there was no statistical difference in posterior displacement (PCLR: 1.5 mm, PCLS: 1.1 mm).

Conclusion

The above values are considered the suitable degree of AP laxity in total knee arthroplasty for a satisfactory clinical outcome 5–9 years after surgery. The PCL in a PCLR prosthesis and the central tibial spine and femoral cam in a PCLS prosthesis might play comparable roles in determining the laxity in the posterior direction in these prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aglietti P, Buzzi R, Felice RD, Giron F (1999) The Insall-Burnstein total knee replacement in osteoarthritis. A 10-year minimum follow-up. J Arthroplasty 14:560–565

    Article  CAS  PubMed  Google Scholar 

  2. Aglietti P, Buzzi R, Segoni F, Zaccherotti G (1995) Insall-Burstein posterior-stabilized knee prosthesis in rheumatoid arthritis. J Arthroplasty 10:217–225

    CAS  PubMed  Google Scholar 

  3. Alicea J (2001) Scoring systems and their validation for the arthritic knee. In: Insall JN, Scott WN (eds) Surgery of the knee, Vol 2. Churchill Livingstone, New York, pp 1507–1515

  4. Bach BR, Jones GT, Hager CA, Sweet FA, Luergans S (1995) Arthrometric results of arthroscopically assisted anterior cruciate ligament reconstruction using autograft patellar tendon substitution. Am J Sports Med 23:179–185

    PubMed  Google Scholar 

  5. Bach BR, Warren RF, Flynn WM, Kroll M, Wickiewiecz TL (1990) Arthrometric evaluation of knees that have a torn anterior cruciate ligament. J Bone Joint Surg Am 72:1299–1306

    PubMed  Google Scholar 

  6. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12:297–304

    Article  CAS  PubMed  Google Scholar 

  7. Berger RA, Rosenberg AG, Barden RM et al (2001) Long-term followup of the Miller-Galante total knee replacement. Clin Orthop 388:58–67

    PubMed  Google Scholar 

  8. Brassard MF, Insall JN Scuderi GR, Colizza W (2001) Does modularity affect clinical success? A comparison with a minimum 10-year followup. Clin Orthop 388:26–32

    PubMed  Google Scholar 

  9. Colizza WA, Insall JN, Scuderi GR (1995) Posterior stabilized total knee prosthesis: assessment of polyethylene damage and osteolysis after a ten-year minimum follow-up. J Bone Joint Surg Am 77:1713–1720

    CAS  PubMed  Google Scholar 

  10. Daniel DM, Malcom LL, Losse G et al (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    CAS  PubMed  Google Scholar 

  11. Dejour D, Deschamps GD, Garotta L, Dejour H (1999) Laxity in posterior cruciate sparing and posterior stabilized total knee prostheses. Clin Orthop 364:182–193

    Article  PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop 331:107–117

    Article  PubMed  Google Scholar 

  13. Dennis DA, Komistek RD, Walker SA, Cheal EJ, Stiehl JB (2001) Femoral condylar lift-off in vivo total knee arthroplasty. J Bone Joint Surg Br 83:33–39

    Article  CAS  PubMed  Google Scholar 

  14. Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop 248:9–12

    PubMed  Google Scholar 

  15. Ewald FC, Wright J, Poss R et al (1999) Kinematic total knee arthroplasty. A 10- to 14-year prospective follow-up review. J Arthroplasty 14:473–480

    Article  CAS  PubMed  Google Scholar 

  16. Franklin JL, Rosenberg TD, Paulos LE, France P (1991) Radiographic assessment of instability of the knee due to rupture of the anterior cruciate ligament. A quadriceps-contraction technique. J Bone Joint Surg Am 73:365–372

    CAS  PubMed  Google Scholar 

  17. Girgis FG, Marshall JL, Al Monajem ARS (1975) The cruciate ligaments of the knee joint. An anatomical, functional and experimental analysis. Clin Orthop 106:216–231

    PubMed  Google Scholar 

  18. Hofmann AA, Evanich JD, Ferguson RP, Camargo MP (2001) Ten- to 14- year clinical followup of the cementless natural knee system. Clin Orthop 388:85–94

    PubMed  Google Scholar 

  19. Ishii Y, Terajima K, Koga Y et al (1995) Comparison of knee joint functional laxity after total knee replacement with posterior cruciate-retaining and cruciate-ligament substituting prostheses. Knee 2:195–199

    Article  Google Scholar 

  20. Ishii Y, Terajima K, Koga Y, Bechtold JE (1999) Screw home motion after total knee replacement. Clin Orthop 358:181–187

    Article  PubMed  Google Scholar 

  21. Ishii Y, Terajima K, Koga Y et al (1998) Comparison of three-dimensional kinematics of total knee replacements during gait between retention and substitution of posterior cruciate ligament. J Orthop Sci 3:310–317

    Article  CAS  PubMed  Google Scholar 

  22. Iversen BF, Stürup J, Jacobsen K, Andersen J (1989) Implications of muscular defense in testing for anterior drawer sign in the knee. A stress radiographic investigation. Am J Sports Med 17:409–413

    CAS  PubMed  Google Scholar 

  23. Laskin RS (2001) The genesis total knee prosthesis. A 10-year followup study. Clin Orthop 388:95–102

    PubMed  Google Scholar 

  24. Malkani AL, Rand JA, Bryan RS et al (1995) Total knee arthroplasty with the kinematic condylar prosthesis. A 10-year follow-up study. J Bone Joint Surg Am 77:423–431

    CAS  PubMed  Google Scholar 

  25. Mariconda M, Lotti G, Milano C (2000) Fracture of posterior-stabilized tibial insert in Genesis knee prosthesis. J Arthroplasty 15:529–530

    Article  CAS  PubMed  Google Scholar 

  26. Markolf KL, Graff-Radford A, Amstutz HC (1978) In vivo knee stability. J Bone Joint Surg Am 60:664–674

    CAS  PubMed  Google Scholar 

  27. Markolf KL, Kochan A, Amstutz HC (1984) Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J Bone Joint Surg Am 66:242–253

    CAS  PubMed  Google Scholar 

  28. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee—the contributions of the supporting structures. J Bone Joint Surg Am 58:583–594

    CAS  PubMed  Google Scholar 

  29. Matsuda S, Miura H, Nagamine R et al (1999) Knee stability in posterior cruciate ligament retaining total knee arthroplasty. Clin Orthop 366:169–173

    Article  PubMed  Google Scholar 

  30. Matsuda S, Whiteside LA, White SE, McCarthy DS (1997) Knee kinematics of posterior cruciate ligament sacrificed total knee arthroplasty. Clin Orthop 341:257–266

    Article  PubMed  Google Scholar 

  31. Mokris JG, Smith SW, Anderson SE (1997) Primary total knee arthroplasty using the Genesis total knee arthroplasty system: 3- to 6-year follow-up study of 105 knees. J Arthroplasty 12:91–98

    Article  CAS  PubMed  Google Scholar 

  32. Parker DA, Rorabeck CH, Bourne RB (2001) Long-term followup of cementless versus hybrid fixation for total knee arthroplasty. Clin Orthop 388:68–76

    PubMed  Google Scholar 

  33. Pinskerrova V, Iwaki H, Freeman MAR (2001) The shapes and relative movement of the femur and tibia in the unloaded cadaveric knee: a study using MRI as an anatomical tool. In: Insall JN, Scott WN (eds) Surgery of the knee, 3rd ed. Churchill Livingstone, New York, pp 255–283

  34. Rand JA, Ilstrup DM (1991) Survivorship analysis of total knee arthroplasty. Cumulative rates of survival of 9200 total knee arthroplasties: J Bone Joint Surg Am 73:397–409

    Google Scholar 

  35. Ritter MA, Berend ME, Meding JB et al (2001) Long-term followup of anatomic graduated components posterior cruciate-retaining total knee replacement. Clin Orthop 388:51–57

    PubMed  Google Scholar 

  36. Ritter MA, Herbst SA, Keating EM et al (1994) Long-term survival analysis of a posterior cruciate-retaining total condylar total knee arthroplasty. Clin Orthop 309:136–145

    PubMed  Google Scholar 

  37. Sextro GS, Berry DJ, Rand JA (2001) Total knee arthroplasty using cruciate-retaining kinematic condylar prosthesis. Clin Orthop 388:33–40

    PubMed  Google Scholar 

  38. Sherman OH, Markolf KL, Ferkel RD (1987) Measurement of anterior laxity in normal and anterior cruciate absent knees with two instrument test devices. Clin Orthop 215:156–161

    PubMed  Google Scholar 

  39. Stein A, Fleming B, Pope MH, Howe JG (1988) Total knee arthroplasty kinematics. An in vivo evaluation of four different designs. J Arthroplasty 3 [Suppl]: S31–36

  40. Steiner ME, Brown C, Zarins B et al (1990) Measurement of anterior-posterior displacement of the knee. J Bone Joint Surg Am 72:1307–1315

    CAS  PubMed  Google Scholar 

  41. Stern SH, Insall JN (1992) Posterior stabilized prosthesis: results after follow-up of nine to twelve years. J Bone Joint Surg Am 74:980–986

    CAS  PubMed  Google Scholar 

  42. Stiehl JB, Komisteck RD, Dennis DA, Paxson RD, Hoff WA (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg Br 77:884–889

    CAS  PubMed  Google Scholar 

  43. Torzilli PA, Greenberg RL, Insall JN (1981) An in vivo biomechanical evaluation of anterior-posterior motion of the knee. Roentgenographic measurement technique, stress machine, and stable population. J Bone Joint Surg Am 63:960–968

    CAS  PubMed  Google Scholar 

  44. Torzilli PA, Greenberg RL, Hood RW, Pavlov H, Insall JN (1984) Measurement of anterior-posterior motion of the knee in injured patients using a biomechanical stress technique. J Bone Joint Surg Am 66:1438–1442

    CAS  PubMed  Google Scholar 

  45. Warren PJ, Olanlokun TK, Cobb AG, Walker PS, Iverson BF (1994) Laxity and function in knee replacements. A comparison study of three prosthetic designs. Clin Orthop 305:200–208

    PubMed  Google Scholar 

  46. White SH, O’Connor JJ, Goodfellow JW (1991) Sagittal plane laxity following knee arthroplasty. J Bone Joint Surg Br 73:268–270

    CAS  PubMed  Google Scholar 

  47. Whiteside LA (2001) Long-term followup of the bone ingrowth Ortholoc knee system without a metal-back patella. Clin Orthop 388:77–84

    PubMed  Google Scholar 

  48. Worland RL, Jessup DE, Johnson J (1997) Posterior cruciate recession in total knee arthroplasty. J Arthroplasty 12:70–73

    Article  CAS  PubMed  Google Scholar 

  49. Wright J, Weald F, Walker PS et al (1990) Total knee arthroplasty with the kinematic prosthesis: results after 5–9 years: a follow-up note. J Bone Joint Surg Am 72:1003–1009

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, Y., Matsuda, Y., Ishii, R. et al. Sagittal laxity in vivo after total knee arthroplasty. Arch Orthop Trauma Surg 125, 249–253 (2005). https://doi.org/10.1007/s00402-004-0712-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-004-0712-3

Keywords

Navigation