Skip to main content
Log in

Unstable versus stable uncemented femoral stems: a radiological study of periprosthetic bone changes in two types of uncemented stems with different concepts of fixation

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Uncemented stems in total hip arthroplasty (THA) are used increasingly often because they are believed to offer a reliable long-term fixation. However, periprosthetic bone remodelling has been a worrying issue. A proximal demineralization has been noted in femurs with well-fixed stems, and it has been explained as by-passing of mechanical forces along the fixed implant (stress-shielding). Aseptic loosening has been a major problem in several uncemented series with earlier designs. The objective for this study was to investigate how the host bone adapts to a loose stem compared with a well-fixed stem after a long time.

Materials and methods

An investigation with dual-energy X-ray absorptiometry (DEXA), scintimetry and radiological assessment was carried out in 20 patients 8 years after a THA for arthrosis with two different uncemented stems. Ten patients received a stem coated with polytetrafluoroethylene (Anaform); all prostheses showed migration and were considered unstable. Ten patients received a hydroxyapatite-coated stem (Bi-Metric); no prosthesis migrated.

Results

Different remodelling patterns were seen. In the unstable group, the periprosthetic bone mineral density (BMD) was significantly reduced along the entire stem, while in the stable group only proximal bone loss was seen. The scintigraphic uptake was increased under the stem tip in both groups, and among unstable stems uptake was also increased in the calcar region.

Conclusion

The assessment of periprosthetic bone remodelling after uncemented THA with long-term observation shows a different host-bone response in stable versus unstable femoral implants. Prior to a femoral revision, measurement of the BMD could be beneficial; it may guide the surgeon when deciding which surgical technique to use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ang KC, Das De S, Goh JC, Low SL, Bose K (1997) Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. J Bone Joint Surg Br 79:675–679

    Google Scholar 

  2. Bourne RB, Rorabeck CH, Ghazal ME, Lee MH (1994) Pain in the thigh following total hip replacement with a porous-coated anatomic prosthesis for osteoarthrosis. A five-year follow-up study. J Bone Joint Surg Am 76:1464–1470

    CAS  PubMed  Google Scholar 

  3. Bryan JM, Sumner DR, Hurwitz DE, Tompkins GS, Andriacchi TP, Galante JO (1996) Altered load history affects periprosthetic bone loss following cementless total hip arthroplasty. J Orthop Res 14:762–768

    CAS  PubMed  Google Scholar 

  4. Charnley J, Cupic Z (1973) The nine and ten year results of the low-friction arthroplasty of the hip. Clin Orthop 95:9–25

    CAS  PubMed  Google Scholar 

  5. D’Antonio JA, Capello WN, Crothers OD, Jaffe WL, Manley MT (1992) Early clinical experience with hydroxyapatite-coated femoral implants. J Bone Joint Surg Am 74:995–1008

    CAS  PubMed  Google Scholar 

  6. Dorr LD, Lewonowski K, Lucero M, Harris M, Wan Z (1997) Failure mechanisms of anatomic porous replacement I cementless total hip replacement. Clin Orthop 334:157–167

    Article  PubMed  Google Scholar 

  7. Dorr LD, Takei GK, Conaty JP (1983) Total hip arthroplasties in patients less than forty-five years old. J Bone Joint Surg Am 65:474–479

    CAS  PubMed  Google Scholar 

  8. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231:7–28

    PubMed  Google Scholar 

  9. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69:45–55

    CAS  PubMed  Google Scholar 

  10. Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop 257:107–128

    PubMed  Google Scholar 

  11. Engh CA, McGovern TF, Bobyn JD, Harris WH (1992) A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am 74:1009–1020

    CAS  PubMed  Google Scholar 

  12. Engh CA, McGovern TF, Schmidt LM (1993) Roentgenographic densitometry of bone adjacent to a femoral prosthesis. Clin Orthop 292:177–190

    PubMed  Google Scholar 

  13. Garcia-Cimbrelo E, Cruz-Pardos A, Cordero J, Sanchez-Sotelo J (2000) Low-friction arthroplasty in patients younger than 40 years old: 20- to 25-year results. J Arthroplasty 15:825–832

    Article  CAS  PubMed  Google Scholar 

  14. Geesink RG, De Groot K, Klein CP (1987) Chemical implant fixation using hydroxyl-apatite coatings: the development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clin Orthop 225:147–170

    CAS  PubMed  Google Scholar 

  15. Geesink RG, Hoefnagels NH (1995) Six-year results of hydroxyapatite-coated total hip replacement. J Bone Joint Surg Br 77:534–547

    CAS  PubMed  Google Scholar 

  16. Gruen TA, McNeice GM, Amstutz HC (1979) ‘Modes of failure’ of cemented stem-type femoral components. A radiographic analysis of loosening. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  17. Halstead A, Jones CW, Rawlings RD (1979) A study of the reaction of human tissue to proplast. J Biomed Mater Res 13:121–134

    CAS  PubMed  Google Scholar 

  18. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty—an end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    CAS  PubMed  Google Scholar 

  19. Havelin LI, Engeseater LB, Espehaug B, Furnes O, Lie SA, Vollset SE (2000) The Norwegian Arthroplasty Register: 11 years and 73,000 arthroplasties. Acta Orthop Scand 71:337–353

    Article  CAS  PubMed  Google Scholar 

  20. Hedley AK, Gruen TAW, Borden LS, Hungerford DS, Habermann E, Kenna RV (1987) Two-year follow-up of the PCA noncemented total hip replacement. In: Brand RA (ed) The hip. Proceedings of the 14th Open Scientific Meeting of The Hip Society. CV Mosby, St. Louis, p 225

  21. Herberts P, Malchau H (2000) Long-term registration has improved the quality of hip replacement: a review of the Swedish THR Register comparing 160,000 cases. Acta Orthop Scand 71:111–121

    CAS  PubMed  Google Scholar 

  22. Homsy CA (2000) Soft porous PTFE-composite alloplasts: tissue-bonding characteristics. J Endourol 14:25–32

    CAS  PubMed  Google Scholar 

  23. Homsy CA, Cain TE, Kessler FB, Anderson MS, King JW (1972) Porous implant systems for prosthesis stabilization. Clin Orthop 89:220–235

    CAS  PubMed  Google Scholar 

  24. Jacobs JJ, Sumner DR, Galante JO (1993) Mechanisms of bone loss associated with total hip replacement. Orthop Clin North Am 24:583–590

    CAS  PubMed  Google Scholar 

  25. Jacobsen S, Jensen FK, Poulsen K, Sturup J, Retpen JB (2003) Good performance of a titanium femoral component in cementless hip arthroplasty in younger patients: 97 arthroplasties followed for 5–11 years. Acta Orthop Scand 74:375–379

    PubMed  Google Scholar 

  26. Jacobsson SA, Djerf K, Gillquist J, Hammerby S, Ivarsson I (1993) A prospective comparison of Butel and PCA hip arthroplasty. J Bone Joint Surg Br 75:624–629

    CAS  PubMed  Google Scholar 

  27. Jacobsson SA, Djerf K, Gillquist J, Svedberg J (1994) Tc-scintimetry in 56 cementless hip arthroplasties. A prospective, randomized comparison of two femoral components. Acta Orthop Scand 65:418–423

    CAS  PubMed  Google Scholar 

  28. Joshi AB, Porter ML, Trail IA, Hunt LP, Murphy JC, Hardinge K (1993) Long-term results of Charnley low-friction arthroplasty in young patients. J Bone Joint Surg Br 75:616–623

    CAS  PubMed  Google Scholar 

  29. Kavanagh BF, Dewitz MA, Ilstrup DM, Stauffer RN, Coventry MB (1989) Charnley total hip arthroplasty with cement: Fifteen-year results. J Bone Joint Surg Am 71:1496–1503

    CAS  PubMed  Google Scholar 

  30. Keet GG, Runne WC (1989) The Anaform endoprosthesis: a proplast-coated femoral endoprosthesis. Orthopedics 12:1185–1190

    CAS  PubMed  Google Scholar 

  31. Khalily C, Whiteside LA (1998) Predictive value of early radiographic findings in cementless total hip arthroplasty femoral components: an 8- to 12-year follow-up. J Arthroplasty 13:768–773

    CAS  PubMed  Google Scholar 

  32. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW (1993) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. Methods and preliminary results. J Bone Joint Surg Br 75:279–287

    Google Scholar 

  33. Kim YH, Kim VE (1992) Results of the Harris-Galante cementless hip prosthesis. J Bone Joint Surg Br 74:83–87

    CAS  PubMed  Google Scholar 

  34. Kim YH, Kim VE (1993) Early migration of uncemented porous coated anatomic femoral component related to aseptic loosening. Clin Orthop 295:146–155

    PubMed  Google Scholar 

  35. Kiratli BJ, Checovich MM, McBeath AA, Wilson MA, Heiner JP (1996) Measurement of bone mineral density by dual-energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 11:184–193

    PubMed  Google Scholar 

  36. Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual X-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10:836–844

    CAS  PubMed  Google Scholar 

  37. Kröger H, Vanninen E, Overmyer M, Miettinen H, Rushton N, Suomalainen O (1997): Periprosthetic bone loss and regional bone turnover in uncemented total hip arthroplasty: a prospective study using high resolution single photon emission tomography and dual-energy X-ray absorptiometry. J Bone Miner Res 12:487–492

    Google Scholar 

  38. Kröger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop 352:66–74

    PubMed  Google Scholar 

  39. Kröger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O (1996) Evaluation of periprosthetic bone using dual-energy x-ray absorptiometry: precision of the method and effect of operation on bone mineral density. J Bone Miner Res 11:1526–1530

    CAS  PubMed  Google Scholar 

  40. Kärrholm J, Malchau H, Snorrason F, Herberts P (1994) Micromotion of femoral stems in total hip arthroplasty. A randomized study of cemented, hydroxyapatite-coated, and porous-coated stems with roentgen stereophotogrammetric analysis. J Bone Joint Surg Am 76:1692–1705

    PubMed  Google Scholar 

  41. Maathuis PG, Visser JD (1996) High failure rate of soft-interface stem coating for fixation of femoral endoprostheses. J Arthroplasty 11:548–552

    CAS  PubMed  Google Scholar 

  42. Malchau H, Herberts P, Söderman P, Odén A (2000) Prognosis of total hip replacement. Update and validation of results from the Swedish National Hip Arthroplasty Registry 1979–1998. Presented at the 67th Annual Meeting of the American Academy of Orthopaedic Surgeons, Orlando, Florida, USA

  43. Malchau H, Kärrholm J, Wang YX, Herberts P (1995) Accuracy of migration analysis in hip arthroplasty. Digitized and conventional radiography compared to radiostereometry in 51 patients. Acta Orthop Scand 66:418–424

    CAS  PubMed  Google Scholar 

  44. Mallory TH, Head WC, Lombardi AV Jr, Emerson RH Jr, Eberle RW, Mitchell MB (1996) Clinical and radiographic outcome of a cementless, titanium, plasma spray-coated total hip arthroplasty femoral component. Justification for continuance of use. J Arthroplasty 11:653–666

    CAS  PubMed  Google Scholar 

  45. Maloney WJ, Smith RL (1996) Periprosthetic osteolysis in total hip arthroplasty: the role of particulate wear debris. Instr Course Lect 45:171–182

    CAS  PubMed  Google Scholar 

  46. Marmor L (1976) Femoral loosening in total hip replacement. Clin Orthop 121:116–119

    PubMed  Google Scholar 

  47. Martini F, Lebherz C, Mayer F, Leichtle U, Kremling E, Sell S (2000) Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J Bone Joint Surg Br 82:1065–1071

    Article  CAS  PubMed  Google Scholar 

  48. Mazess R, Collick B, Trempe J, Barden H, Hanson J (1989) Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tissue Int 44:228–232

    CAS  PubMed  Google Scholar 

  49. McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br 73:774–778

    Google Scholar 

  50. McLaughlin JR, Lee KR (1997) Total hip arthroplasty with an uncemented femoral component. Excellent result at ten-year follow-up. J Bone Joint Surg Br 79:900–907

    Article  CAS  PubMed  Google Scholar 

  51. McNally SA, Shepperd JA, Mann CV, Walczak JP (2000) The results at nine to twelve years of the use of a hydroxyapatite-coated femoral stem. J Bone Joint Surg Br 82:378–382

    Article  CAS  PubMed  Google Scholar 

  52. Meding JB, Keating EM, Ritter MA, Faris PM, Berend ME (2004) Minimum ten-year follow-up of a straight-stemmed, plasma-sprayed, titanium-alloy, uncemented femoral component in primary total hip arthroplasty. J Bone J Surg Am 86:92–97

    Google Scholar 

  53. Moilanen T, Scott G, Newell M, Garvie N, Freeman MAR (1997) Bone scintigraphic appearance of asymptomatic hydroxyapatite-coated hip arthroplasties. J Arthroplasty 12:380–386

    CAS  PubMed  Google Scholar 

  54. Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg Br 82:952–958

    Article  CAS  PubMed  Google Scholar 

  55. Oswald SG, Van Nostrand D, Savory CG, Callaghan JJ (1989) Three-phase bone scan and indium white blood cell scintigraphy following porous coated hip arthroplasty: a prospective study of the prosthetic tip. J Nucl Med 30:1321–1331

    CAS  PubMed  Google Scholar 

  56. Pellicci PM, Wilson PD Jr, Sledge CB, Salvati EA, Ranawat CS, Poss R (1982) Revision total hip arthroplasty. Clin Orthop 170:34–41

    PubMed  Google Scholar 

  57. Rahmy AI, Tonino AJ, Tan WD (1994) Quantitative analysis of technetium-99m-methylene disphosphonate uptake in unilateral hydroxyapatite-coated total hip prostheses: first year follow-up. J Nucl Med 35:1788–1791

    CAS  PubMed  Google Scholar 

  58. Rosenthall L, Ghazal ME, Brooks CE (1991) Quantitative analysis of radiophosphate uptakes in asymptomatic porous-coated hip endoprostheses. J Nucl Med 32:1391–1393

    CAS  PubMed  Google Scholar 

  59. Santavirta S, Konttinen YT, Bergroth V, Eskola A, Tallroth K, Lindholm TS (1990) Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies. J Bone Joint Surg Am 72:252–258

    CAS  PubMed  Google Scholar 

  60. Schicha H, Perner K, Voth E, Reith HG, Willert HG, Emrich D (1986) Zementfreie Implantation von Zweimüller-Endler-Totalendoprothesen der Hüfte- Klinische, röntgenologische und szintigraphische Verlaufskontrolle über zwei Jahre. Nuklearmedizin 25:55–60

    CAS  PubMed  Google Scholar 

  61. Scott DF, Jaffe WL (1996) Host-bone response to porous-coated cobalt-chrome and hydroxyapatite-coated titanium femoral components in hip arthroplasty. Dual-energy X-ray absorptiometry analysis of paired bilateral cases at 5 to 7 years. J Arthroplasty 11:429–437

    CAS  PubMed  Google Scholar 

  62. Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop 274:202–212

    PubMed  Google Scholar 

  63. Søballe K, Hansen ES, Brockstedt-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, Hvid I, Bünger C (1991) Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop 272:300–307

    PubMed  Google Scholar 

  64. Trevisan C, Bigoni M, Randelli G, Marinoni EC, Peretti G, Ortolani S (1997) Periprosthetic bone density around fully hydroxyapatite coated femoral stem. Clin Orthop 340:109–117

    PubMed  Google Scholar 

  65. Venesmaa P, Kröger H, Miettinen H, Jurvelin J, Suomalainen O, Alhava E (2000) Bone loss around failed femoral implant measured by dual-energy X-ray absorptiometry. J Orthop Sci 5:380–384

    Article  CAS  PubMed  Google Scholar 

  66. Venesmaa PK, Kröger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM (2001) Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry--a 3-year follow-up study. J Bone Miner Res 16:1056–1061

    CAS  PubMed  Google Scholar 

  67. Wixson RL, Stulberg SD, Mehlhoff M (1988) Results of cemented, uncemented, and hybrid total hip replacements at two to four years. Presented at the 55th Annual Meeting of the American Academy of Orthopaedic Surgeons, Atlanta, Georgia, USA

  68. Wixson RL, Stulberg SD, Van Flandern GJ, Puri L (1997) Maintenance of proximal bone mass with an uncemented femoral stem analysis with dual-energy X-ray absorptiometry. J Arthroplasty 12:365–372

    Google Scholar 

Download references

Acknowledgements

The study was kindly supported by research grants from The Emil and Maria Palms’ Foundation and The Ulla and Gustaf af Ugglas’ Foundation, Sweden. We are also indebted to the Department of Nuclear Medicine, Danderyds Hospital, for technical assistance with the scintigraphic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Bodén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodén, H., Adolphson, P. & Öberg, M. Unstable versus stable uncemented femoral stems: a radiological study of periprosthetic bone changes in two types of uncemented stems with different concepts of fixation. Arch Orthop Trauma Surg 124, 382–392 (2004). https://doi.org/10.1007/s00402-004-0666-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-004-0666-5

Keywords

Navigation