Skip to main content

Advertisement

Log in

BISS: concept and biomechanical investigations of a new screw system for electromagnetically induced internal osteostimulation

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The aim of an intraosseous application of electromagnetic alternating fields is to speed up both the regeneration of osteonecroses and bone regeneration. In clinical studies, the efficiency of the technique could be successfully proven by using a transducer coil. The advantage of the traditional technique was the variety of its applications in connection with various osteosynthesis systems; the disadvantage was a possible failure of the contacting leads and the resulting functional breakdown.

Materials and methods

A newly developed BISS screw (bipolar induction screw system) with integrated coil and electrodes was compared to a standard cannulated screw used in the traditional technique. The strength of BISS screws (n=6) and of cannulated screws (n=6) was evaluated in comparative biomechanical tests. Examinations consisted of torsional and static and dynamic cantilever tests. All screws were made of the same material (TiAl6V4) and had identical outer dimensions.

Results

No significantly lower strengths could be observed when we compared BISS screws with cannulated screws. The BISS screws even showed significantly higher mechanical values due to a reinforcing effect by the attached electrode.

Conclusion

In the modified concept of the new BISS screw, both coil and electrodes are housed in only one cannulated screw. No negative effects concerning mechanical strength and durability were associated with the new screw concept. This provides for a simpler implantation and makes removal easier, while the risk of a cable tear is avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ascherl R (1976) Experimentelle Untersuchungen über den elektrischen Widerstand und den Leitwert am lebenden und toten Knochengewebe unter physiologischen Bedingungen sowie nach pathologischen Veränderungen. Thesis, Technische Universität, Munich

  2. Ascherl R, Walz H, Geißdörfer K, Schmeller M-L, Lechner F, Blümel G (1989) Förderung der Knochenheilung durch extrem niederfrequente elektromagnetische Wechselfelder im Experiment. In: Lechner F (ed) Elektrostimulation und Magnetfeldtherapie: Anwendung, Ergebnisse und Qualitätssicherung. Schattauer, Stuttgart, pp 1–9

  3. Berman AT, Reid JS, Yanicko DR Jr, Sih GC, Zimmerman MR (1984) Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop 186:284–292

    PubMed  Google Scholar 

  4. Blair B, Koval KJ, Kummer F, Zuckerman JD (1994) Basicervical fractures of the proximal femur: a biomechanical study of 3 internal fixation techniques. Clin Orthop 306:256–263

    PubMed  Google Scholar 

  5. Bohay DR, Manoli A (1995) Clawtoe deformity following vascularized fibula graft. Foot Ankle Int 16:607–609

    CAS  PubMed  Google Scholar 

  6. Brighton CT, Friedenberg ZB, Black J, Esterhai L, Mitchell JE, Montique F (1981) Electrically induced osteogenesis: relationship between charge, current density and the amount of bone formed. Clin Orthop 161:122–132

    PubMed  Google Scholar 

  7. Cristofolini L, Viceconti M, Toni A, Giunti A (1996) Influence of thigh muscles on the axial strains in a proximal femur during early stance in gait. J Biomech 28:617–624

    Article  Google Scholar 

  8. Deneka DA, Simonian PT, Stankewich CJ, Eckert D, Chapman JR, Tencer AF (1997) Biomechanical comparison of internal fixation techniques for the treatment of unstable basicervical femoral neck fractures. J Orthop Trauma 11:337–343

    Article  CAS  PubMed  Google Scholar 

  9. Fukada E, Yasuda J (1957) On the piezoelectric effect of bone. J Physiol Soc Jpn 12:1158–1162

    Google Scholar 

  10. Hasegawa Y, Iwata H, Torii S, Iwase T, Kawamoto K, Iwasada S (1997) Vascularized pedicle bone-grafting for nontraumatic avascular necrosis of the femoral head. A 5- to 11-year follow-up. Arch Orthop Trauma Surg 116:251–258

    Article  CAS  PubMed  Google Scholar 

  11. Hernigou P (1999) Treatment of hip necrosis by sequestrectomy and replacement with bone cement. Acta Orthop Belg 65 [Suppl 1]:89–94

    Google Scholar 

  12. Kane SM, Ward WA, Jordan LC, Guilford WB, Hanley EN Jr (1996) Vascularized fibular grafting compared with core decompression in the treatment of femoral head osteonecrosis. Orthopedics 19:869–872

    CAS  PubMed  Google Scholar 

  13. Kraus W (1984) Magnetfeldtherapie und magnetisch induzierte Elektrostimulation in der Orthopädie. Orthopäde 13:78–92

    Google Scholar 

  14. Kraus W, Lechner F (1972) Die Heilung der Pseudarthrosen und Spontanfrakturen durch strukturbildende elektrodynamische Potentiale. Münch Med Wochenschr 114:1814–1819

  15. Loschinger M, Thumm S, Hammerle H, Rodemann HP (1999) Induction of intracellular calcium oscillations in human skin fibroblast populations by sinusoidal extremely low-frequency magnetic fields (20 Hz, 8 mT) is dependent on the differentiation state of the single cell. Radiat Res 151:195–200

    CAS  PubMed  Google Scholar 

  16. Rodemann HP, Bayreuther K, Pfleiderer G (1989) The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Exp Cell Res 182:610–621

    CAS  PubMed  Google Scholar 

  17. Rouleau JP, Blasier RB, Tsai E, Goldstein SA (1994) Cannulated hip screws: a study of fixation integrity, cut-out resistance, and high-cycle bending fatigue performance. J Orthop Trauma 8:293–299

    CAS  PubMed  Google Scholar 

  18. Rubin CT, Donahue HJ, Rubin JE, McLeod KJ (1993) Optimization of electric field parameters for the control of bone remodeling: exploitation of an indigenous mechanism for the prevention of osteopenia. J Bone Miner Res 8 [Suppl 2]:573–581

  19. Ryken TC, Clausen JD, Traynelis VC, Goel VK (1995) Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws. J Neurosurg 83:325–329

    CAS  PubMed  Google Scholar 

  20. Scully SP, Aaron RK, Urbaniak JR (1998) Survival analysis of hips treated with core decompression or vascularized fibular grafting because of avascular necrosis. J Bone Joint Surg Am 80:1270–1275

    CAS  PubMed  Google Scholar 

  21. Solonen KA, Rindell K, Paavilainen T (1990) Vascularized pedicled bone graft into the femoral head—treatment of aseptic necrosis of the femoral head. Arch Orthop Trauma Surg 109:160–163

    CAS  PubMed  Google Scholar 

  22. Stuermer KM, Schmit-Neuerburg KP (1985) Indications and clinical results of electromagnetically-induced alternating current stimulation of poorly reacting pseudarthroses. Unfallchirurgie 11:197–203

    PubMed  Google Scholar 

  23. Thumm S, Loschinger M, Glock S, Hammerle H, Rodemann HP (1999) Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields. Radiat Environ Biophys 38:195–199

    Article  CAS  PubMed  Google Scholar 

  24. Urbaniak JR, Coogan PG, Gunneson EB, Nunley JA (1995) Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. A long-term follow-up study of one hundred and three hips. J Bone Joint Surg Am 77:681–694

    CAS  PubMed  Google Scholar 

  25. Vail TP, Urbaniak JR (1996) Donor-site morbidity with use of vascularized autogenous fibular grafts. J Bone Joint Surg Am 78:204–211

    CAS  PubMed  Google Scholar 

  26. Yoon TR, Song EK, Rowe SM, Park CH (2001) Failure after core decompression in osteonecrosis of the femoral head. Int Orthop 24:316–318

    Article  CAS  PubMed  Google Scholar 

  27. Yun YH, Kim NH, Han DY, Kang ES (1993) An investigation of bone necrosis and healing after cryosurgery, phenol cautery or packing with bone cement of defects in the dog femur. Int Orthop 17:176–183

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Mittelmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittelmeier, W., Lehner, S., Kraus, W. et al. BISS: concept and biomechanical investigations of a new screw system for electromagnetically induced internal osteostimulation. Arch Orthop Trauma Surg 124, 86–91 (2004). https://doi.org/10.1007/s00402-003-0594-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-003-0594-9

Keywords

Navigation