Archives of Orthopaedic and Trauma Surgery

, Volume 123, Issue 9, pp 501–504 | Cite as

Quantitative assessment of blood vessels of the human Achilles tendon: an immunohistochemical cadaver study

  • Thore Zantop
  • Bernhard Tillmann
  • Wolf PetersenEmail author
Original Article



The pathogenesis of Achilles tendon rupture remains unclear, but vascular patterns may play an important role. Hypoxia is considered to be an important factor in the aetiology of tendon degeneration.


Statements from the literature regarding the vascularization of the Achilles tendon are controversial. We determined the vascular density of the Achilles tendon using a new method involving antibodies against laminin, a component of the basement membrane.


The blood supply of the Achilles tendon mainly arose from the anterior paratenon of the tendon from which vessels run into the tendon. The proximal part of the tendon was supplied by a recurrent branch of the posterior tibial artery, while the distal part of the tendon was vascularized by the rete arteriosum calcaneare, supplied by the fibular and posterior tibial arteries. An avascular area could be seen close to the insertion of the tendon to the calcaneus. Three regions with different vascular density could be determined in the Achilles tendon. The distal part of the Achilles tendon had a vascular density of 56.6 vessels/cm2. In the middle part of the tendon, the vascular density was much lower: 28.2 vessels/cm2. The proximal part of the tendon had a vascular density of 73.4 vessels/cm2.


The reduced vascularization in the tendon waist may be a predisposing factor for degeneration and spontaneous rupture of the human Achilles tendon.


Achilles tendon Vascularity Tendon degeneration Spontaneous rupture Laminin 



We would like to thank Mrs. R. Worm, Mr. R. Klaws, Mrs. S. Gundlach, Mrs. K. Stengel, Mrs. H. Siebke, and Mrs. H. Waluk for their expert technical assistance. This work was supported by a grant of the 'Arbeitskreis Muskel- und Skelettsystem' of the Christian Albrechts University, Kiel.


  1. 1.
    Ahmed IM, Lagopoulos M, McConnel P, Soames RW, Sefton GK (1998) Blood supply of the Achilles tendon. J Orthop Res 16:591–596PubMedGoogle Scholar
  2. 2.
    Astrom M, Westlin N (1994) Blood flow in the human Achilles tendon assessed by laser Doppler flowmetry. J Orthop Res 12:246–252PubMedGoogle Scholar
  3. 3.
    Carr AJ, Norris SH (1989) The blood supply of the calcaneal tendon. J Bone Joint Surg Br 71:100–101PubMedGoogle Scholar
  4. 4.
    Graf J, Schneider U, Niethard FU (1990) Die Mikrozirkulation der Achillessehne und die Bedeutung des Paratenons. Handchir Mikrochir Plast Chir 22:163–166PubMedGoogle Scholar
  5. 5.
    Håstad K, Larsson L-G, Lindholm Å (1958) Clearance of radiosodium after local deposit in the Achilles tendon. Acta Chir Scand 116:251–255Google Scholar
  6. 6.
    Holz J (1980) Achillessehnen-Ruptur und Achillodynie. Fortsch Med 98:1517–1520Google Scholar
  7. 7.
    Jones FW (1944) The foot. Ballière, Tindal and Cox, LondonGoogle Scholar
  8. 8.
    Kannus P, Józsa L (1997) Human tendons. Human Kinetics, USAGoogle Scholar
  9. 9.
    Kannus P, Natri A (1997) Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports 7:107–112PubMedGoogle Scholar
  10. 10.
    Kolts I, Tillmann B, Lüllmann-Rauch R (1994) The structure and vascularization of the biceps brachii long head tendon. Ann Anat 176:75–80Google Scholar
  11. 11.
    Lagergren C, Lindholm Å (1958) Vascular distribution in the AAchilles tendon: an angiographic and microangiographic study. Acta Chir Scand 116:491–495Google Scholar
  12. 12.
    Petersen W, Stein V, Tillmann B (1999) Blood supply of the tibialis anterior tendon. Arch Orthop Trauma Surg 119:371–375PubMedGoogle Scholar
  13. 13.
    Plötz E (1938) Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop 67:212–234Google Scholar
  14. 14.
    Rudert M, Tillmann B (1993) Lymph and blood supply of the human intervertebral disc—cadaver study of correlations to discitis. Acta Orthop Scand 64:37–40PubMedGoogle Scholar
  15. 15.
    Schmidt-Rohlfing B, Graf J, Schneider U, Niethard FU (1992) The blood supply of the Achilles tendon. Intern Orthop (SICOT) 16:29–31Google Scholar
  16. 16.
    Seegesser B, Goesele A, Renggli P (1995) Die Achillessehne im Sport. Orthopäde 24:252–267Google Scholar
  17. 17.
    Spalteholz KW (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten, 2nd edn. Hirzel, LeipzigGoogle Scholar
  18. 18.
    Stein V, Laprell H, Tinnemeyer S, Petersen W (2000) Quantitative assesment of the intravascular volume of the human Achilles tendon. Acta Orthop Scand 181:313–314Google Scholar
  19. 19.
    Thermann H (1999) Die Behandlung der Achillessehnenruptur. Orthopäde 28:82–97Google Scholar
  20. 20.
    Tillmann B, Schünke M (1991) Struktur und Funktion extrazellulärer Matrix. Anat Anz 168:23–36Google Scholar
  21. 21.
    Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin a glycoprotein from basement membranes. J Biol Chem 254:9933−9937PubMedGoogle Scholar
  22. 22.
    Wladimirov B, Andreeff I (1971) Über die Mikrovaskularisation der Achillessehne. Anat Anz 133:12–19Google Scholar
  23. 23.
    Zwipp H, Südkamp N, Thermann H, Samek N (1998) Die Achillessehnenruptur. Unfallchirurg 92:554–559Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Thore Zantop
    • 1
  • Bernhard Tillmann
    • 1
  • Wolf Petersen
    • 2
    Email author
  1. 1.Department of AnatomyChristian Albrechts University KielKielGermany
  2. 2.Department of Orthopaedic SurgeryChristian Albrechts Universität KielKielGermany

Personalised recommendations