Abstract
Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM–rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2–5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.
This is a preview of subscription content, access via your institution.




References
Behnan J, Finocchiaro G, Hanna G (2019) The landscape of the mesenchymal signature in brain tumours. Brain 142:847–866. https://doi.org/10.1093/brain/awz044
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034
Casey AE, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P et al (2018) Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol 217:2951–2974. https://doi.org/10.1083/jcb.201804042
Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12:35. https://doi.org/10.1186/1471-2105-12-35
Choi UY, Kang JS, Hwang YS, Kim YJ (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47:e144. https://doi.org/10.1038/emm.2014.110
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511
Dar AA, Pradhan TN, Kulkarni DP, Shah SU, Rao KV, Chaukar DA et al (2016) Extracellular 2’5’-oligoadenylate synthetase 2 mediates T-cell receptor CD3-zeta chain down-regulation via caspase-3 activation in oral cancer. Immunology 147:251–264. https://doi.org/10.1111/imm.12560
Drappier M, Michiels T (2015) Inhibition of the OAS/RNase L pathway by viruses. Curr Opin Virol 15:19–26. https://doi.org/10.1016/j.coviro.2015.07.002
Exley MA, Garcia S, Zellander A, Zilberberg J, Andrews DW (2022) Challenges and opportunities for immunotherapeutic intervention against myeloid immunosuppression in glioblastoma. J Clin Med. https://doi.org/10.3390/jcm11041069
Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N et al (2021) Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184(2454–2470):e2426. https://doi.org/10.1016/j.cell.2021.03.023
Goswami S, Walle T, Cornish AE, Basu S, Anandhan S, Fernandez I et al (2020) Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med 26:39–46. https://doi.org/10.1038/s41591-019-0694-x
Guerriero JL (2018) Macrophages: the road less traveled, changing anticancer therapy. Trends Mol Med 24:472–489. https://doi.org/10.1016/j.molmed.2018.03.006
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A et al (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573-3587.e3529. https://doi.org/10.1016/j.cell.2021.04.048
Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L et al (2021) Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39(779–792):e711. https://doi.org/10.1016/j.ccell.2021.05.002
Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A, Aregger M et al (2017) Evaluation and design of genome-wide CRISPR/SpCas9 Knockout Screens. G3 (Bethesda) 7:2719–2727. https://doi.org/10.1534/g3.117.041277
Hoekstra ME, Bornes L, Dijkgraaf FE, Philips D, Pardieck IN, Toebes M et al (2020) Long-distance modulation of bystander tumor cells by CD8(+) T cell-secreted IFNgamma. Nat Cancer 1:291–301. https://doi.org/10.1038/s43018-020-0036-4
Jing W, Guo X, Wang G, Bi Y, Han L, Zhu Q et al (2020) Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol 78:106012. https://doi.org/10.1016/j.intimp.2019.106012
Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193. https://doi.org/10.1126/science.1239947
Kim Y, Varn FS, Park SH, Yoon BW, Park HR, Lee C et al (2021) Perspective of mesenchymal transformation in glioblastoma. Acta Neuropathol Commun 9:50. https://doi.org/10.1186/s40478-021-01151-4
Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25:316–327. https://doi.org/10.1101/gr.180612.114
Korber V, Yang J, Barah P, Wu Y, Stichel D, Gu Z et al (2019) Evolutionary trajectories of IDH(WT) glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35(692–704):e612. https://doi.org/10.1016/j.ccell.2019.02.007
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740. https://doi.org/10.1093/bioinformatics/btr260
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1
Meyer M, Reimand J, Lan X, Head R, Zhu X, Kushida M et al (2015) Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA 112:851–856. https://doi.org/10.1073/pnas.1320611111
Mikolajewicz N, Brown KR, Moffat J, Han H (2022) Multi-level cellular and functional annotation of single-cell transcriptomes. Biorxiv. https://doi.org/10.1101/2022.03.13.484162
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273. https://doi.org/10.1038/ng1180
Nassiri F, Liu J, Patil V, Mamatjan Y, Wang JZ, Hugh-White R et al (2021) A clinically applicable integrative molecular classification of meningiomas. Nature 597:119–125. https://doi.org/10.1038/s41586-021-03850-3
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(835–849):e821. https://doi.org/10.1016/j.cell.2019.06.024
Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J et al (2021) Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun 12:1151. https://doi.org/10.1038/s41467-021-21407-w
Ott M, Tomaszowski KH, Marisetty A, Kong LY, Wei J, Duna M et al (2020) Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight. https://doi.org/10.1172/jci.insight.134386
P’ng C, Green J, Chong LC, Waggott D, Prokopec SD, Shamsi M et al (2019) BPG: seamless, automated and interactive visualization of scientific data. BMC Bioinform 20:42. https://doi.org/10.1186/s12859-019-2610-2
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257
Qazi M, Mann A, van Ommeren R, Venugopal C, McFarlane N, Vora P (2014) Generation of murine xenograft models of brain tumors from primary human tissue for in vivo analysis of the brain tumor-initiating cell. Methods Mol Biol 1210:37–49. https://doi.org/10.1007/978-1-4939-1435-7_4
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128
Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N et al (2019) The proteogenomic landscape of curable prostate cancer. Cancer Cell 35(414–427):e416. https://doi.org/10.1016/j.ccell.2019.02.005
Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014. https://doi.org/10.1073/pnas.1219747110
Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316. https://doi.org/10.1001/jama.2017.18718
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102
Thibaut R, Bost P, Milo I, Cazaux M, Lemaitre F, Garcia Z et al (2020) Bystander IFN-gamma activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer 1:302–314. https://doi.org/10.1038/s43018-020-0038-2
Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B et al (2019) Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177(1035–1049):e1019. https://doi.org/10.1016/j.cell.2019.03.030
Venugopal C, McFarlane NM, Nolte S, Manoranjan B, Singh SK (2012) Processing of primary brain tumor tissue for stem cell assays and flow sorting. J Vis Exp. https://doi.org/10.3791/4111
Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y et al (2021) Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39(509–528):e520. https://doi.org/10.1016/j.ccell.2021.01.006
Wickham H (2016) Data analysis. ggplot2. Springer, Champ, pp 189–201
Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573. https://doi.org/10.1093/bioinformatics/btq170
Wojtowicz EE, Lechman ER, Hermans KG, Schoof EM, Wienholds E, Isserlin R et al (2016) Ectopic miR-125a expression induces long-term repopulating stem cell capacity in mouse and human hematopoietic progenitors. Cell Stem Cell 19:383–396. https://doi.org/10.1016/j.stem.2016.06.008
Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A, Fioretos T et al (2019) Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun 10:1519. https://doi.org/10.1038/s41467-019-09469-3
Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A et al (2019) Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol 29:513–529. https://doi.org/10.1111/bpa.12690
Zhang Y, Yu C (2020) Prognostic characterization of OAS1/OAS2/OAS3/OASL in breast cancer. BMC Cancer 20:575. https://doi.org/10.1186/s12885-020-07034-6
Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182. https://doi.org/10.1038/ncb3090
Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M et al (2018) Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun 9:903. https://doi.org/10.1038/s41467-018-03311-y
Acknowledgements
This work was partially supported by a CIHR Project Grant (PJT154357) to TK, the NIH/NCI under awards P30CA016042, U24CA248265 and P50CA211015 to PCB and TFRI 1065. This research was funded in part by the Ontario Ministry of Health and Long-Term Care. SKS and TK were supported through the Canadian Research Chair program. We thank Dr. Kaiyun Yang for her contribution in generating patient’s information.
Author information
Authors and Affiliations
Contributions
NT, SK, JL, CV, PCB, SKS and TK conceived of the study idea. NT, SK, JL, KZ, DM, VI, CC, WDG, MS, CZ, JC, CH, JQL, JPP, PKA, TW, MW, JNG, performed experiments and data analysis. NT, SK, JL, KZ, PCB, SKS and TK wrote the manuscript with input from all other authors. CV, PCB, SKS and TK supervised the study. All authors interpreted the data, reviewed the manuscript and approved the final version.
Corresponding authors
Ethics declarations
Conflict of interest
The authors have declared that no conflict of interest exists.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tatari, N., Khan, S., Livingstone, J. et al. The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol 144, 1127–1142 (2022). https://doi.org/10.1007/s00401-022-02506-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00401-022-02506-4