Skip to main content

The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers

Abstract

Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM–rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2–5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Behnan J, Finocchiaro G, Hanna G (2019) The landscape of the mesenchymal signature in brain tumours. Brain 142:847–866. https://doi.org/10.1093/brain/awz044

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Casey AE, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P et al (2018) Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol 217:2951–2974. https://doi.org/10.1083/jcb.201804042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12:35. https://doi.org/10.1186/1471-2105-12-35

    Article  Google Scholar 

  5. Choi UY, Kang JS, Hwang YS, Kim YJ (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47:e144. https://doi.org/10.1038/emm.2014.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  8. Dar AA, Pradhan TN, Kulkarni DP, Shah SU, Rao KV, Chaukar DA et al (2016) Extracellular 2’5’-oligoadenylate synthetase 2 mediates T-cell receptor CD3-zeta chain down-regulation via caspase-3 activation in oral cancer. Immunology 147:251–264. https://doi.org/10.1111/imm.12560

    Article  CAS  PubMed  Google Scholar 

  9. Drappier M, Michiels T (2015) Inhibition of the OAS/RNase L pathway by viruses. Curr Opin Virol 15:19–26. https://doi.org/10.1016/j.coviro.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Exley MA, Garcia S, Zellander A, Zilberberg J, Andrews DW (2022) Challenges and opportunities for immunotherapeutic intervention against myeloid immunosuppression in glioblastoma. J Clin Med. https://doi.org/10.3390/jcm11041069

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N et al (2021) Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184(2454–2470):e2426. https://doi.org/10.1016/j.cell.2021.03.023

    Article  CAS  Google Scholar 

  12. Goswami S, Walle T, Cornish AE, Basu S, Anandhan S, Fernandez I et al (2020) Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med 26:39–46. https://doi.org/10.1038/s41591-019-0694-x

    Article  CAS  PubMed  Google Scholar 

  13. Guerriero JL (2018) Macrophages: the road less traveled, changing anticancer therapy. Trends Mol Med 24:472–489. https://doi.org/10.1016/j.molmed.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A et al (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573-3587.e3529. https://doi.org/10.1016/j.cell.2021.04.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L et al (2021) Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39(779–792):e711. https://doi.org/10.1016/j.ccell.2021.05.002

    Article  CAS  Google Scholar 

  16. Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A, Aregger M et al (2017) Evaluation and design of genome-wide CRISPR/SpCas9 Knockout Screens. G3 (Bethesda) 7:2719–2727. https://doi.org/10.1534/g3.117.041277

    Article  CAS  Google Scholar 

  17. Hoekstra ME, Bornes L, Dijkgraaf FE, Philips D, Pardieck IN, Toebes M et al (2020) Long-distance modulation of bystander tumor cells by CD8(+) T cell-secreted IFNgamma. Nat Cancer 1:291–301. https://doi.org/10.1038/s43018-020-0036-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jing W, Guo X, Wang G, Bi Y, Han L, Zhu Q et al (2020) Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol 78:106012. https://doi.org/10.1016/j.intimp.2019.106012

    Article  CAS  PubMed  Google Scholar 

  19. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193. https://doi.org/10.1126/science.1239947

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y, Varn FS, Park SH, Yoon BW, Park HR, Lee C et al (2021) Perspective of mesenchymal transformation in glioblastoma. Acta Neuropathol Commun 9:50. https://doi.org/10.1186/s40478-021-01151-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25:316–327. https://doi.org/10.1101/gr.180612.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Korber V, Yang J, Barah P, Wu Y, Stichel D, Gu Z et al (2019) Evolutionary trajectories of IDH(WT) glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35(692–704):e612. https://doi.org/10.1016/j.ccell.2019.02.007

    Article  CAS  Google Scholar 

  23. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740. https://doi.org/10.1093/bioinformatics/btr260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  26. Meyer M, Reimand J, Lan X, Head R, Zhu X, Kushida M et al (2015) Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA 112:851–856. https://doi.org/10.1073/pnas.1320611111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mikolajewicz N, Brown KR, Moffat J, Han H (2022) Multi-level cellular and functional annotation of single-cell transcriptomes. Biorxiv. https://doi.org/10.1101/2022.03.13.484162

    Article  Google Scholar 

  28. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273. https://doi.org/10.1038/ng1180

    Article  CAS  PubMed  Google Scholar 

  29. Nassiri F, Liu J, Patil V, Mamatjan Y, Wang JZ, Hugh-White R et al (2021) A clinically applicable integrative molecular classification of meningiomas. Nature 597:119–125. https://doi.org/10.1038/s41586-021-03850-3

    Article  CAS  PubMed  Google Scholar 

  30. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(835–849):e821. https://doi.org/10.1016/j.cell.2019.06.024

    Article  CAS  Google Scholar 

  31. Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J et al (2021) Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun 12:1151. https://doi.org/10.1038/s41467-021-21407-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ott M, Tomaszowski KH, Marisetty A, Kong LY, Wei J, Duna M et al (2020) Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight. https://doi.org/10.1172/jci.insight.134386

    Article  PubMed  PubMed Central  Google Scholar 

  33. P’ng C, Green J, Chong LC, Waggott D, Prokopec SD, Shamsi M et al (2019) BPG: seamless, automated and interactive visualization of scientific data. BMC Bioinform 20:42. https://doi.org/10.1186/s12859-019-2610-2

    Article  Google Scholar 

  34. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qazi M, Mann A, van Ommeren R, Venugopal C, McFarlane N, Vora P (2014) Generation of murine xenograft models of brain tumors from primary human tissue for in vivo analysis of the brain tumor-initiating cell. Methods Mol Biol 1210:37–49. https://doi.org/10.1007/978-1-4939-1435-7_4

    Article  CAS  PubMed  Google Scholar 

  36. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  37. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  38. Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N et al (2019) The proteogenomic landscape of curable prostate cancer. Cancer Cell 35(414–427):e416. https://doi.org/10.1016/j.ccell.2019.02.005

    Article  CAS  Google Scholar 

  39. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014. https://doi.org/10.1073/pnas.1219747110

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316. https://doi.org/10.1001/jama.2017.18718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thibaut R, Bost P, Milo I, Cazaux M, Lemaitre F, Garcia Z et al (2020) Bystander IFN-gamma activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer 1:302–314. https://doi.org/10.1038/s43018-020-0038-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B et al (2019) Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177(1035–1049):e1019. https://doi.org/10.1016/j.cell.2019.03.030

    Article  CAS  Google Scholar 

  44. Venugopal C, McFarlane NM, Nolte S, Manoranjan B, Singh SK (2012) Processing of primary brain tumor tissue for stem cell assays and flow sorting. J Vis Exp. https://doi.org/10.3791/4111

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y et al (2021) Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39(509–528):e520. https://doi.org/10.1016/j.ccell.2021.01.006

    Article  CAS  Google Scholar 

  46. Wickham H (2016) Data analysis. ggplot2. Springer, Champ, pp 189–201

    Google Scholar 

  47. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573. https://doi.org/10.1093/bioinformatics/btq170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wojtowicz EE, Lechman ER, Hermans KG, Schoof EM, Wienholds E, Isserlin R et al (2016) Ectopic miR-125a expression induces long-term repopulating stem cell capacity in mouse and human hematopoietic progenitors. Cell Stem Cell 19:383–396. https://doi.org/10.1016/j.stem.2016.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A, Fioretos T et al (2019) Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun 10:1519. https://doi.org/10.1038/s41467-019-09469-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A et al (2019) Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol 29:513–529. https://doi.org/10.1111/bpa.12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Yu C (2020) Prognostic characterization of OAS1/OAS2/OAS3/OASL in breast cancer. BMC Cancer 20:575. https://doi.org/10.1186/s12885-020-07034-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182. https://doi.org/10.1038/ncb3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M et al (2018) Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun 9:903. https://doi.org/10.1038/s41467-018-03311-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a CIHR Project Grant (PJT154357) to TK, the NIH/NCI under awards P30CA016042, U24CA248265 and P50CA211015 to PCB and TFRI 1065. This research was funded in part by the Ontario Ministry of Health and Long-Term Care. SKS and TK were supported through the Canadian Research Chair program. We thank Dr. Kaiyun Yang for her contribution in generating patient’s information.

Author information

Authors and Affiliations

Authors

Contributions

NT, SK, JL, CV, PCB, SKS and TK conceived of the study idea. NT, SK, JL, KZ, DM, VI, CC, WDG, MS, CZ, JC, CH, JQL, JPP, PKA, TW, MW, JNG, performed experiments and data analysis. NT, SK, JL, KZ, PCB, SKS and TK wrote the manuscript with input from all other authors. CV, PCB, SKS and TK supervised the study. All authors interpreted the data, reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Paul C. Boutros, Sheila K. Singh or Thomas Kislinger.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatari, N., Khan, S., Livingstone, J. et al. The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol 144, 1127–1142 (2022). https://doi.org/10.1007/s00401-022-02506-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02506-4

Keywords