Skip to main content

Advertisement

Log in

Multi-omic molecular profiling reveals potentially targetable abnormalities shared across multiple histologies of brain metastasis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The deadly complication of brain metastasis (BM) is largely confined to a relatively narrow cross-section of systemic malignancies, suggesting a fundamental role for biological mechanisms shared across commonly brain metastatic tumor types. To identify and characterize such mechanisms, we performed genomic, transcriptional, and proteomic profiling using whole-exome sequencing, mRNA-seq, and reverse-phase protein array analysis in a cohort of the lung, breast, and renal cell carcinomas consisting of BM and patient-matched primary or extracranial metastatic tissues. While no specific genomic alterations were associated with BM, correlations with impaired cellular immunity, upregulated oxidative phosphorylation (OXPHOS), and canonical oncogenic signaling pathways including phosphoinositide 3-kinase (PI3K) signaling, were apparent across multiple tumor histologies. Multiplexed immunofluorescence analysis confirmed significant T cell depletion in BM, indicative of a fundamentally altered immune microenvironment. Moreover, functional studies using in vitro and in vivo modeling demonstrated heightened oxidative metabolism in BM along with sensitivity to OXPHOS inhibition in murine BM models and brain metastatic derivatives relative to isogenic parentals. These findings demonstrate that pathophysiological rewiring of oncogenic signaling, cellular metabolism, and immune microenvironment broadly characterizes BM. Further clarification of this biology will likely reveal promising targets for therapeutic development against BM arising from a broad variety of systemic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adamo B, Deal AM, Burrows E, Geradts J, Hamilton E, Blackwell KL et al (2011) Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Res 13:R125. https://doi.org/10.1186/bcr3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S et al (2016) Mutational signatures associated with tobacco smoking in human cancer. Science 354:618–622. https://doi.org/10.1126/science.aag0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  4. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol 22:2865–2872. https://doi.org/10.1200/JCO.2004.12.149

    Article  PubMed  Google Scholar 

  5. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435. https://doi.org/10.1046/j.1471-4159.2003.02113.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT et al (2015) Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:1164–1177. https://doi.org/10.1158/2159-8290.CD-15-0369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  9. Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525. https://doi.org/10.1038/nature11404

    Article  CAS  Google Scholar 

  10. Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49. https://doi.org/10.1038/nature12222

    Article  CAS  Google Scholar 

  11. Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. https://doi.org/10.1038/nature13385

    Article  CAS  Google Scholar 

  12. Chen G, Chakravarti N, Aardalen K, Lazar AJ, Tetzlaff MT, Wubbenhorst B et al (2014) Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin Cancer Res 20:5537–5546. https://doi.org/10.1158/1078-0432.CCR-13-3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6:827–837. https://doi.org/10.1158/2159-8290.CD-15-1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y-H, Su C-C, Deng W, Lock LF, Donovan PJ, Kayala MA et al (2019) Mitochondrial Akt signaling modulated reprogramming of somatic cells. Sci Rep 9:9919. https://doi.org/10.1038/s41598-019-46359-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN et al (2009) Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res 15:7538–7546. https://doi.org/10.1158/1078-0432.CCR-09-1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Debeb BG, Lacerda L, Anfossi S, Diagaradjane P, Chu K, Bambhroliya A et al (2016) miR-141-mediated regulation of brain metastasis from breast cancer. J Natl Cancer Inst 108:djw026. https://doi.org/10.1093/jnci/djw026

    Article  CAS  PubMed Central  Google Scholar 

  18. Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–501. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  20. Fidler IJ (2015) The biology of brain metastasis: challenges for therapy. Cancer J 21:284–293. https://doi.org/10.1097/PPO.0000000000000126

    Article  CAS  PubMed  Google Scholar 

  21. Fischer GM, Jalali A, Kircher DA, Lee WC, McQuade JL, Haydu LE et al (2019) Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov 9:628–645. https://doi.org/10.1158/2159-8290.CD-18-1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27:6473–6488. https://doi.org/10.1038/onc.2008.313

    Article  CAS  PubMed  Google Scholar 

  23. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23:302–315. https://doi.org/10.1016/j.ccr.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katz R, Hamilton JA, Pownall HJ, Deckelbaum RJ, Hillard CJ, LeBoeuf RC et al (2007) Brain uptake and utilization of fatty acids, lipids & lipoproteins: recommendations for future research. J Mol Neurosci 33:146–150. https://doi.org/10.1007/s12031-007-0059-7

    Article  CAS  PubMed  Google Scholar 

  25. Kudo Y, Haymaker C, Zhang J, Reuben A, Duose DY, Fujimoto J et al (2019) Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann Oncol 30:1521–1530. https://doi.org/10.1093/annonc/mdz207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited-The role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535. https://doi.org/10.1002/ijc.26031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McMullin RP, Wittner BS, Yang C, Denton-Schneider BR, Hicks D, Singavarapu R et al (2014) A BRCA1deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity. Breast Cancer Res 16:R25. https://doi.org/10.1186/bcr3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ngo B, Kim E, Osorio-Vasquez V, Doll S, Bustraan S, Liang RJ et al (2020) Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov 10:1352–1373. https://doi.org/10.1158/2159-8290.CD-19-1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niessner H, Forschner A, Klumpp B, Honegger JB, Witte M, Bornemann A et al (2013) Targeting hyperactivation of the AKT survival pathway to overcome therapy resistance of melanoma brain metastases. Cancer Med 2:76–85. https://doi.org/10.1002/cam4.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572. https://doi.org/10.1093/biostatistics/kxh008

    Article  PubMed  Google Scholar 

  33. Parra ER, Jiang M, Solis L, Mino B, Laberiano C, Hernandez S et al (2020) Procedural requirements and recommendations for multiplex immunofluorescence tyramide signal amplification assays to support translational oncology studies. Cancers (Basel) 12:255. https://doi.org/10.3390/cancers12020255

    Article  Google Scholar 

  34. Parra ER, Uraoka N, Jiang M, Cook P, Gibbons D, Forget MA et al (2017) Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep 7:13380. https://doi.org/10.1038/s41598-017-13942-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petljak M, Alexandrov LB, Brammeld JS, Price S, Wedge DC, Grossmann S et al (2019) Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176:1282-1294.e20. https://doi.org/10.1016/j.cell.2019.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R et al (2012) Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123:205–222. https://doi.org/10.1007/s00401-011-0933-9

    Article  CAS  PubMed  Google Scholar 

  37. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341. https://doi.org/10.1016/j.ccell.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, Wilkie AOM et al (2014) Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 46:912–918. https://doi.org/10.1038/ng.3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shih DJH, Nayyar N, Bihun I, Dagogo-Jack I, Gill CM, Aquilanti E et al (2020) Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat Genet 52:371–377. https://doi.org/10.1038/s41588-020-0592-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  41. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vangapandu HV, Alston B, Morse J, Ayres ML, Wierda WG, Keating MJ et al (2018) Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells. Oncotarget 9:24980–24991. https://doi.org/10.18632/oncotarget.25166

  43. Vazquez F, Lim J-H, Chim H, Bhalla K, Girnun G, Pierce K et al (2013) PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23:287–301. https://doi.org/10.1016/j.ccr.2012.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watts ME, Pocock R, Claudianos C (2018) Brain energy and oxygen metabolism: emerging role in normal function and disease. Front Mol Neurosci 11:216. https://doi.org/10.3389/fnmol.2018.00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920. https://doi.org/10.1016/S0002-9440(10)61180-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wen PY, Loeffler JS (1999) Management of brain metastases. Oncology (Williston Park) 13: 941–54, 957–61 (discussion 961–2, 9)

  47. Yap TA, Rodon Ahnert J, Piha-Paul SA, Fu S, Janku F, Karp DD et al (2019) Phase I trial of IACS-010759 (IACS), a potent, selective inhibitor of complex I of the mitochondrial electron transport chain, in patients (pts) with advanced solid tumors. J Clin Oncol 37:3014–3014. https://doi.org/10.1200/JCO.2019.37.15_suppl.3014

    Article  Google Scholar 

  48. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871. https://doi.org/10.1093/bioinformatics/btp394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J et al (2014) Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–259. https://doi.org/10.1126/science.1256930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M et al (2019) Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med 11:eaau1167. https://doi.org/10.1126/scitranslmed.aau1167

    Article  CAS  PubMed  Google Scholar 

  52. Zhang S, Huang W-C, Zhang L, Zhang C, Lowery FJ, Ding Z et al (2013) Src family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Res 73:5764–5774. https://doi.org/10.1158/0008-5472.CAN-12-1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our patients and their families who provided samples for this research. We thank the Translational Molecular Pathology-Immunoprofiling lab (TMP-IL) at the Department Translational Molecular Pathology, University of Texas MD Anderson Cancer Center for multiplex immunofluorescence staining. This study was supported by NIH/National Cancer Institute Cancer Center Support Grant P30 CA016672 to the University of Texas MD Anderson Cancer Center (Advanced Technology Genomics Core Facility, RPPA Core Facility, Cytogenetics and Cell Authentication Core); MD Anderson Multidisciplinary Research Program; MD Anderson Multi-investigator Research Program; the American Cancer Society-Melanoma Research Alliance Team Award; a Taiho Pharmaceutical grant. J.T.H. is supported by the American Cancer Society and philanthropic contributions to the Melanoma Moon Shots Program of the University of Texas MD Anderson Cancer Center. M.A.D. is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the AIM at Melanoma Foundation, Cancer Fighters of Houston, philanthropic contributions to the Melanoma Moon Shots Program of MD Anderson, and the Anne and John Mendelsohn Chair in Cancer Research. B.G.D. is supported by the Susan G. Komen Career Catalyst Research grant.

Author information

Authors and Affiliations

Authors

Contributions

KF and JTH conceptualized the study and designed the experiments. KF, PBM, GMF, XH, XM, XS, XH-FZ, JZ, SDH, ERP, DY, BGD, MAD, and JTH performed the experiments and/or analyzed data. JTH supervised the study. KF, PBM, ERP, BGD, MAD, and JTH wrote and/or revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jason T. Huse.

Ethics declarations

Conflict of interest

M.A.D. receives commercial research grants from AstraZeneca, Roche/Genentech, GlaxoSmithKline, Myriad, Oncothyreon, and Sanofi-Aventis and is a consultant/advisory board member for GlaxoSmithKline, Novartis, Roche/Genentech, Array, Bristol-Myers Squibb, Sanofi-Aventis, Vaccinex, Syndax, and NanoString. All other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukumura, K., Malgulwar, P.B., Fischer, G.M. et al. Multi-omic molecular profiling reveals potentially targetable abnormalities shared across multiple histologies of brain metastasis. Acta Neuropathol 141, 303–321 (2021). https://doi.org/10.1007/s00401-020-02256-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02256-1

Keywords

Navigation