Skip to main content
Log in

Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ

Acta Neuropathologica Aims and scope Submit manuscript

Cite this article

Abstract

Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer’s disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-β (Aβ) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aβ-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aβ-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer’s mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aβ. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and materials availability

All data are available in the main text or the supplementary materials.

References

  1. Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322:1589–1599. https://doi.org/10.1001/jama.2019.4782

    Article  PubMed  Google Scholar 

  2. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8:663–672. https://doi.org/10.1038/nrn2194

    Article  CAS  PubMed  Google Scholar 

  3. Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A et al (2017) Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 8:473. https://doi.org/10.1038/s41467-017-00618-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen HS, Lipton SA (2005) Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-d-aspartate-gated channels. J Pharmacol Exp Ther 314:961–971. https://doi.org/10.1124/jpet.105.085142

    Article  CAS  PubMed  Google Scholar 

  5. Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N et al (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282:23818–23828. https://doi.org/10.1074/jbc.M701078200

    Article  CAS  PubMed  Google Scholar 

  6. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415. https://doi.org/10.1038/s41582-018-0013-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA (2004) Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci Lett 367:164–167. https://doi.org/10.1016/j.neulet.2004.05.107

    Article  CAS  PubMed  Google Scholar 

  8. Delerue F, Ittner LM (2017) Generation of genetically modified mice through the microinjection of oocytes. J Vis Exp. https://doi.org/10.3791/55765

    Article  PubMed  PubMed Central  Google Scholar 

  9. DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR et al (2013) Antisense reduction of tau in adult mice protects against seizures. J Neurosci 33:12887–12897. https://doi.org/10.1523/jneurosci.2107-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dewachter I, Reverse D, Caluwaerts N, Ris L, Kuiperi C, Van den Haute C et al (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22:3445–3453

    Article  CAS  Google Scholar 

  11. Fitz NF, Castranio EL, Carter AY, Kodali R, Lefterov I, Koldamova R (2014) Improvement of memory deficits and amyloid-beta clearance in aged APP23 mice treated with a combination of anti-amyloid-beta antibody and LXR agonist. J Alzheimer’s Dis JAD 41:535–549. https://doi.org/10.3233/JAD-132789

    Article  CAS  Google Scholar 

  12. Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M et al (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433. https://doi.org/10.1016/j.neurobiolaging.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Glover CP, Bienemann AS, Hopton M, Harding TC, Kew JN, Uney JB (2003) Long-term transgene expression can be mediated in the brain by adenoviral vectors when powerful neuron-specific promoters are used. J Gene Med 5:554–559. https://doi.org/10.1002/jgm.381

    Article  CAS  PubMed  Google Scholar 

  14. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57–62

    Article  CAS  Google Scholar 

  15. Gotz J, Ittner A, Ittner LM (2012) Tau-targeted treatment strategies in Alzheimer's disease. Br J Pharmacol 165:1246–1259. https://doi.org/10.1111/j.1476-5381.2011.01713.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gotz J, Ittner LM (2008) Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544. https://doi.org/10.1038/nrn2420

    Article  CAS  PubMed  Google Scholar 

  17. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  Google Scholar 

  18. Harasta AE, Power JM, von Jonquieres G, Karl T, Drucker DJ, Housley GD et al (2015) Septal glucagon-like peptide 1 receptor expression determines suppression of cocaine-induced behavior. Neuropsychopharmacology 40:1969–1978. https://doi.org/10.1038/npp.2015.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hochgrafe K, Sydow A, Matenia D, Cadinu D, Konen S, Petrova O et al (2015) Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol Commun 3:25. https://doi.org/10.1186/s40478-015-0204-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R et al (2012) Donepezil and memantine for moderate-to-severe Alzheimer's disease. N Engl J Med 366:893–903. https://doi.org/10.1056/NEJMoa1106668

    Article  CAS  PubMed  Google Scholar 

  21. Iba M, Kim C, Florio J, Mante M, Adame A, Rockenstein E et al (2020) Role of alterations in protein kinase p38gamma in the pathogenesis of the synaptic pathology in dementia with lewy bodies and alpha-synuclein transgenic models. Front Neurosci 14:286. https://doi.org/10.3389/fnins.2020.00286

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27. https://doi.org/10.1038/nrneurol.2015.225

    Article  CAS  PubMed  Google Scholar 

  23. Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM (2015) Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem 132:135–145. https://doi.org/10.1111/jnc.12821

    Article  CAS  PubMed  Google Scholar 

  24. Ittner A, Block H, Reichel CA, Varjosalo M, Gehart H, Sumara G et al (2012) Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung. J Exp Med 209:2229–2246. https://doi.org/10.1084/jem.20120677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A et al (2016) Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice. Science 354:904–908. https://doi.org/10.1126/science.aah6205

    Article  CAS  PubMed  Google Scholar 

  26. Ittner A, Ittner LM (2018) Dendritic tau in Alzheimer's disease. Neuron 99:13–27. https://doi.org/10.1016/j.neuron.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  27. Ittner LM, Gotz J (2011) Amyloid-beta and tau—a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 12:65–72. https://doi.org/10.1038/nrn2967

    Article  CAS  PubMed  Google Scholar 

  28. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142:387–397. https://doi.org/10.1016/j.cell.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  29. Jackson KL, Dayton RD, Deverman BE, Klein RL (2016) Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP.B. Front Mol Neurosci 9:116. https://doi.org/10.3389/fnmol.2016.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaniakova M, Nepovimova E, Kleteckova L, Skrenkova K, Holubova K, Chrienova Z et al (2019) Combination of memantine and 6-chlorotacrine as novel multi-target compound against Alzheimer's disease. Curr Alzheimer Res 16:821–833. https://doi.org/10.2174/1567205016666190228122218

    Article  CAS  PubMed  Google Scholar 

  31. Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E et al (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378

    Article  CAS  Google Scholar 

  32. Kim JY, Ash RT, Ceballos-Diaz C, Levites Y, Golde TE, Smirnakis SM et al (2013) Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. Eur J Neurosci 37:1203–1220. https://doi.org/10.1111/ejn.12126

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347. https://doi.org/10.1038/sj.gt.3301905

    Article  CAS  PubMed  Google Scholar 

  34. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X et al (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093. https://doi.org/10.1016/s0896-6273(03)00787-6

    Article  CAS  PubMed  Google Scholar 

  35. Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S (2016) Cognitive deficits in single App knock-in mouse models. Neurobiol Learn Mem 135:73–82. https://doi.org/10.1016/j.nlm.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  36. Matsunaga S, Kishi T, Iwata N (2015) Memantine monotherapy for Alzheimer's disease: a systematic review and meta-analysis. PLoS ONE 10:e0123289. https://doi.org/10.1371/journal.pone.0123289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mondragon-Rodriguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N et al (2012) Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-d-aspartate receptor-dependent tau phosphorylation. J Biol Chem 287:32040–32053. https://doi.org/10.1074/jbc.M112.401240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harbor Perspect Med 2:a006338. https://doi.org/10.1101/cshperspect.a006338

    Article  CAS  Google Scholar 

  39. Necula M, Kuret J (2004) Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279:49694–49703. https://doi.org/10.1074/jbc.M405527200

    Article  CAS  PubMed  Google Scholar 

  40. Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease. Nat Rev Neurol 15:73–88. https://doi.org/10.1038/s41582-018-0116-6

    Article  PubMed  Google Scholar 

  41. Parsons CG, Stoffler A, Danysz W (2007) Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology 53:699–723. https://doi.org/10.1016/j.neuropharm.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  42. Pei JJ, An WL, Zhou XW, Nishimura T, Norberg J, Benedikz E et al (2006) P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Lett 580:107–114. https://doi.org/10.1016/j.febslet.2005.11.059

    Article  CAS  PubMed  Google Scholar 

  43. Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P et al (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26:1245–1256. https://doi.org/10.1038/sj.emboj.7601587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M et al (2009) p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS ONE 4:e7934. https://doi.org/10.1371/journal.pone.0007934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL et al (2000) Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol 99:469–481

    Article  CAS  Google Scholar 

  46. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Risco A, Cuenda A (2012) New Insights into the p38gamma and p38delta MAPK Pathways. J Signal Transduct 2012:520289. https://doi.org/10.1155/2012/520289

    Article  CAS  PubMed  Google Scholar 

  48. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31:700–711. https://doi.org/10.1523/JNEUROSCI.4152-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316:750–754. https://doi.org/10.1126/science.1141736

    Article  CAS  PubMed  Google Scholar 

  50. Sabio G, Cerezo-Guisado MI, Del Reino P, Inesta-Vaquera FA, Rousseau S, Arthur JS et al (2010) p38gamma regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock. J Cell Sci 123:2596–2604. https://doi.org/10.1242/jcs.066514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F et al (2004) Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 380:19–30. https://doi.org/10.1042/BJ20031628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S et al (2014) Single App knock-in mouse models of Alzheimer's disease. Nat Neurosci 17:661–663. https://doi.org/10.1038/nn.3697

    Article  CAS  PubMed  Google Scholar 

  53. Sayas CL, Medina M, Cuadros R, Olla I, Garcia E, Perez M et al (2019) Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE 14:e0210864. https://doi.org/10.1371/journal.pone.0210864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer's disease. Lancet 388:505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  55. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622. https://doi.org/10.1016/S1474-4422(13)70090-5

    Article  CAS  PubMed  Google Scholar 

  56. Stefanoska K, Volkerling A, Bertz J, Poljak A, Ke YD, Ittner LM et al (2018) An N-terminal motif unique to primate tau enables differential protein-protein interactions. J Biol Chem. https://doi.org/10.1074/jbc.RA118.001784

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292

    Article  CAS  Google Scholar 

  58. Tan D, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM et al (2018) Generation of a new tau knockout (tau Δex1) line using CRISPR/Cas9 genome editing in mice. J Alzheimer's Dis 62:571–578

    Article  CAS  Google Scholar 

  59. Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4:29–37. https://doi.org/10.1038/82868

    Article  CAS  PubMed  Google Scholar 

  60. Van Dam D, D'Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci 17:388–396

    Article  Google Scholar 

  61. van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK et al (2015) Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 41:906–925. https://doi.org/10.1111/nan.12233

    Article  CAS  PubMed  Google Scholar 

  62. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  63. Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP et al (2013) Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci USA 110:3131–3136. https://doi.org/10.1073/pnas.1217832110

    Article  PubMed  Google Scholar 

  64. Xu R, Janson CG, Mastakov M, Lawlor P, Young D, Mouravlev A et al (2001) Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther 8:1323–1332. https://doi.org/10.1038/sj.gt.3301529

    Article  CAS  PubMed  Google Scholar 

  65. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968. https://doi.org/10.1038/nprot.2014.134

    Article  CAS  PubMed  Google Scholar 

  66. Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:E88–88

    Article  CAS  Google Scholar 

  67. Yoshiyama Y, Lee VM, Trojanowski JQ (2013) Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 84:784–795. https://doi.org/10.1136/jnnp-2012-303144

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank staff of Macquarie Animal Research Services (MARS), Troy Butler and Jess Spathos for help with animal husbandry.

Funding

This work was supported by funding from the National Health and Medical Research Council (Grant# 1081916, 1123564, 1132524, 1136241, 1143848, 1143978, 1176628), the Australian Research Council (Grant# DP170100781, DP170100843, DP200102396) and Macquarie University. AI is a National Health and Medical Research Council Emerging Leadership fellow (Grant# 1176628).

Author information

Authors and Affiliations

Authors

Contributions

AI and LMI conceived of the original study concept, designed over-arching research strategy and co-led the study. AI designed the specific research plan of all experiments. AI, PRA, EP and KS performed experiments, analyzed data and prepared figures. AI, KS, PRA, ARPT and JB performed behavior tests and analyzed data. YL and AMV provided critical assistance with experiments. AI, YDK and LMI obtained funding. AI and LMI supervised experiments. All authors contributed to writing of the manuscript.

Corresponding authors

Correspondence to Arne Ittner or Lars M. Ittner.

Ethics declarations

Conflict of interest

AI and LMI are inventors on a patent application related to targeting p38γ and Thr-205 tau in Alzheimer’s and other neurodegenerative diseases (Australian Patent Number APA#2016900764).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2670 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ittner, A., Asih, P.R., Tan, A.R.P. et al. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathol 140, 279–294 (2020). https://doi.org/10.1007/s00401-020-02191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02191-1

Keywords

Navigation