Abstract
Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer’s disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-β (Aβ) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aβ-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aβ-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer’s mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aβ. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.
This is a preview of subscription content,
to check access.





Similar content being viewed by others
Data and materials availability
All data are available in the main text or the supplementary materials.
References
Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322:1589–1599. https://doi.org/10.1001/jama.2019.4782
Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8:663–672. https://doi.org/10.1038/nrn2194
Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A et al (2017) Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 8:473. https://doi.org/10.1038/s41467-017-00618-0
Chen HS, Lipton SA (2005) Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-d-aspartate-gated channels. J Pharmacol Exp Ther 314:961–971. https://doi.org/10.1124/jpet.105.085142
Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N et al (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282:23818–23828. https://doi.org/10.1074/jbc.M701078200
Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415. https://doi.org/10.1038/s41582-018-0013-z
Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA (2004) Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci Lett 367:164–167. https://doi.org/10.1016/j.neulet.2004.05.107
Delerue F, Ittner LM (2017) Generation of genetically modified mice through the microinjection of oocytes. J Vis Exp. https://doi.org/10.3791/55765
DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR et al (2013) Antisense reduction of tau in adult mice protects against seizures. J Neurosci 33:12887–12897. https://doi.org/10.1523/jneurosci.2107-13.2013
Dewachter I, Reverse D, Caluwaerts N, Ris L, Kuiperi C, Van den Haute C et al (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22:3445–3453
Fitz NF, Castranio EL, Carter AY, Kodali R, Lefterov I, Koldamova R (2014) Improvement of memory deficits and amyloid-beta clearance in aged APP23 mice treated with a combination of anti-amyloid-beta antibody and LXR agonist. J Alzheimer’s Dis JAD 41:535–549. https://doi.org/10.3233/JAD-132789
Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M et al (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433. https://doi.org/10.1016/j.neurobiolaging.2009.03.002
Glover CP, Bienemann AS, Hopton M, Harding TC, Kew JN, Uney JB (2003) Long-term transgene expression can be mediated in the brain by adenoviral vectors when powerful neuron-specific promoters are used. J Gene Med 5:554–559. https://doi.org/10.1002/jgm.381
Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57–62
Gotz J, Ittner A, Ittner LM (2012) Tau-targeted treatment strategies in Alzheimer's disease. Br J Pharmacol 165:1246–1259. https://doi.org/10.1111/j.1476-5381.2011.01713.x
Gotz J, Ittner LM (2008) Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544. https://doi.org/10.1038/nrn2420
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112
Harasta AE, Power JM, von Jonquieres G, Karl T, Drucker DJ, Housley GD et al (2015) Septal glucagon-like peptide 1 receptor expression determines suppression of cocaine-induced behavior. Neuropsychopharmacology 40:1969–1978. https://doi.org/10.1038/npp.2015.47
Hochgrafe K, Sydow A, Matenia D, Cadinu D, Konen S, Petrova O et al (2015) Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol Commun 3:25. https://doi.org/10.1186/s40478-015-0204-4
Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R et al (2012) Donepezil and memantine for moderate-to-severe Alzheimer's disease. N Engl J Med 366:893–903. https://doi.org/10.1056/NEJMoa1106668
Iba M, Kim C, Florio J, Mante M, Adame A, Rockenstein E et al (2020) Role of alterations in protein kinase p38gamma in the pathogenesis of the synaptic pathology in dementia with lewy bodies and alpha-synuclein transgenic models. Front Neurosci 14:286. https://doi.org/10.3389/fnins.2020.00286
Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27. https://doi.org/10.1038/nrneurol.2015.225
Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM (2015) Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem 132:135–145. https://doi.org/10.1111/jnc.12821
Ittner A, Block H, Reichel CA, Varjosalo M, Gehart H, Sumara G et al (2012) Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung. J Exp Med 209:2229–2246. https://doi.org/10.1084/jem.20120677
Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A et al (2016) Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice. Science 354:904–908. https://doi.org/10.1126/science.aah6205
Ittner A, Ittner LM (2018) Dendritic tau in Alzheimer's disease. Neuron 99:13–27. https://doi.org/10.1016/j.neuron.2018.06.003
Ittner LM, Gotz J (2011) Amyloid-beta and tau—a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 12:65–72. https://doi.org/10.1038/nrn2967
Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142:387–397. https://doi.org/10.1016/j.cell.2010.06.036
Jackson KL, Dayton RD, Deverman BE, Klein RL (2016) Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP.B. Front Mol Neurosci 9:116. https://doi.org/10.3389/fnmol.2016.00116
Kaniakova M, Nepovimova E, Kleteckova L, Skrenkova K, Holubova K, Chrienova Z et al (2019) Combination of memantine and 6-chlorotacrine as novel multi-target compound against Alzheimer's disease. Curr Alzheimer Res 16:821–833. https://doi.org/10.2174/1567205016666190228122218
Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E et al (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378
Kim JY, Ash RT, Ceballos-Diaz C, Levites Y, Golde TE, Smirnakis SM et al (2013) Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. Eur J Neurosci 37:1203–1220. https://doi.org/10.1111/ejn.12126
Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347. https://doi.org/10.1038/sj.gt.3301905
Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X et al (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093. https://doi.org/10.1016/s0896-6273(03)00787-6
Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S (2016) Cognitive deficits in single App knock-in mouse models. Neurobiol Learn Mem 135:73–82. https://doi.org/10.1016/j.nlm.2016.07.001
Matsunaga S, Kishi T, Iwata N (2015) Memantine monotherapy for Alzheimer's disease: a systematic review and meta-analysis. PLoS ONE 10:e0123289. https://doi.org/10.1371/journal.pone.0123289
Mondragon-Rodriguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N et al (2012) Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-d-aspartate receptor-dependent tau phosphorylation. J Biol Chem 287:32040–32053. https://doi.org/10.1074/jbc.M112.401240
Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harbor Perspect Med 2:a006338. https://doi.org/10.1101/cshperspect.a006338
Necula M, Kuret J (2004) Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279:49694–49703. https://doi.org/10.1074/jbc.M405527200
Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease. Nat Rev Neurol 15:73–88. https://doi.org/10.1038/s41582-018-0116-6
Parsons CG, Stoffler A, Danysz W (2007) Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology 53:699–723. https://doi.org/10.1016/j.neuropharm.2007.07.013
Pei JJ, An WL, Zhou XW, Nishimura T, Norberg J, Benedikz E et al (2006) P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Lett 580:107–114. https://doi.org/10.1016/j.febslet.2005.11.059
Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P et al (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26:1245–1256. https://doi.org/10.1038/sj.emboj.7601587
Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M et al (2009) p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS ONE 4:e7934. https://doi.org/10.1371/journal.pone.0007934
Probst A, Gotz J, Wiederhold KH, Tolnay M, Mistl C, Jaton AL et al (2000) Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol 99:469–481
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143
Risco A, Cuenda A (2012) New Insights into the p38gamma and p38delta MAPK Pathways. J Signal Transduct 2012:520289. https://doi.org/10.1155/2012/520289
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31:700–711. https://doi.org/10.1523/JNEUROSCI.4152-10.2011
Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316:750–754. https://doi.org/10.1126/science.1141736
Sabio G, Cerezo-Guisado MI, Del Reino P, Inesta-Vaquera FA, Rousseau S, Arthur JS et al (2010) p38gamma regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock. J Cell Sci 123:2596–2604. https://doi.org/10.1242/jcs.066514
Sabio G, Reuver S, Feijoo C, Hasegawa M, Thomas GM, Centeno F et al (2004) Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J 380:19–30. https://doi.org/10.1042/BJ20031628
Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S et al (2014) Single App knock-in mouse models of Alzheimer's disease. Nat Neurosci 17:661–663. https://doi.org/10.1038/nn.3697
Sayas CL, Medina M, Cuadros R, Olla I, Garcia E, Perez M et al (2019) Role of tau N-terminal motif in the secretion of human tau by End Binding proteins. PLoS ONE 14:e0210864. https://doi.org/10.1371/journal.pone.0210864
Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S et al (2016) Alzheimer's disease. Lancet 388:505–517. https://doi.org/10.1016/S0140-6736(15)01124-1
Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12:609–622. https://doi.org/10.1016/S1474-4422(13)70090-5
Stefanoska K, Volkerling A, Bertz J, Poljak A, Ke YD, Ittner LM et al (2018) An N-terminal motif unique to primate tau enables differential protein-protein interactions. J Biol Chem. https://doi.org/10.1074/jbc.RA118.001784
Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94:13287–13292
Tan D, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM et al (2018) Generation of a new tau knockout (tau Δex1) line using CRISPR/Cas9 genome editing in mice. J Alzheimer's Dis 62:571–578
Tucker KL, Meyer M, Barde YA (2001) Neurotrophins are required for nerve growth during development. Nat Neurosci 4:29–37. https://doi.org/10.1038/82868
Van Dam D, D'Hooge R, Staufenbiel M, Van Ginneken C, Van Meir F, De Deyn PP (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci 17:388–396
van Eersel J, Stevens CH, Przybyla M, Gladbach A, Stefanoska K, Chan CK et al (2015) Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 41:906–925. https://doi.org/10.1111/nan.12233
Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116
Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP et al (2013) Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci USA 110:3131–3136. https://doi.org/10.1073/pnas.1217832110
Xu R, Janson CG, Mastakov M, Lawlor P, Young D, Mouravlev A et al (2001) Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther 8:1323–1332. https://doi.org/10.1038/sj.gt.3301529
Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968. https://doi.org/10.1038/nprot.2014.134
Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:E88–88
Yoshiyama Y, Lee VM, Trojanowski JQ (2013) Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 84:784–795. https://doi.org/10.1136/jnnp-2012-303144
Acknowledgements
The authors would like to thank staff of Macquarie Animal Research Services (MARS), Troy Butler and Jess Spathos for help with animal husbandry.
Funding
This work was supported by funding from the National Health and Medical Research Council (Grant# 1081916, 1123564, 1132524, 1136241, 1143848, 1143978, 1176628), the Australian Research Council (Grant# DP170100781, DP170100843, DP200102396) and Macquarie University. AI is a National Health and Medical Research Council Emerging Leadership fellow (Grant# 1176628).
Author information
Authors and Affiliations
Contributions
AI and LMI conceived of the original study concept, designed over-arching research strategy and co-led the study. AI designed the specific research plan of all experiments. AI, PRA, EP and KS performed experiments, analyzed data and prepared figures. AI, KS, PRA, ARPT and JB performed behavior tests and analyzed data. YL and AMV provided critical assistance with experiments. AI, YDK and LMI obtained funding. AI and LMI supervised experiments. All authors contributed to writing of the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
AI and LMI are inventors on a patent application related to targeting p38γ and Thr-205 tau in Alzheimer’s and other neurodegenerative diseases (Australian Patent Number APA#2016900764).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ittner, A., Asih, P.R., Tan, A.R.P. et al. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathol 140, 279–294 (2020). https://doi.org/10.1007/s00401-020-02191-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00401-020-02191-1