Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition

Abstract

Brain tumors are the most common solid tumors of childhood, and the genetic drivers and optimal therapeutic strategies for many of the different subtypes remain unknown. Here, we identify that bithalamic gliomas harbor frequent mutations in the EGFR oncogene, only rare histone H3 mutation (in contrast to their unilateral counterparts), and a distinct genome-wide DNA methylation profile compared to all other glioma subtypes studied to date. These EGFR mutations are either small in-frame insertions within exon 20 (intracellular tyrosine kinase domain) or missense mutations within exon 7 (extracellular ligand-binding domain) that occur in the absence of accompanying gene amplification. We find these EGFR mutations are oncogenic in primary astrocyte models and confer sensitivity to specific tyrosine kinase inhibitors dependent on location within the kinase domain or extracellular domain. We initiated treatment with targeted kinase inhibitors in four children whose tumors harbor EGFR mutations with encouraging results. This study identifies a promising genomically-tailored therapeutic strategy for bithalamic gliomas, a lethal and genetically distinct brain tumor of childhood.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I et al (2013) De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov 3:534–547

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA et al (2013) EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther 12:220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Benbir G, Sayilir I, Oz B et al (2008) Bilateral thalamic glioma. A case report. J Neurol Sci 25:301–305

    Google Scholar 

  5. 5.

    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Broniscer A, Hwang SN, Chamdine O, Lin T, Pounds S, Onar-Thomas A et al (2018) Bithalamic gliomas may be molecularly distinct from their unilateral high-grade counterparts. Brain Pathol 28:112–120

    CAS  PubMed  Google Scholar 

  7. 7.

    Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH et al (2008) Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 26:5603–5609

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cancer Genome Atlas Research Network et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    CAS  Google Scholar 

  9. 9.

    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Di Rocco C, Iannelli A (2002) Bilateral thalamic tumors in children. Childs Nerv Syst 18:440–444

    PubMed  Google Scholar 

  12. 12.

    Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ et al (2014) Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol 15:503

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gudowius S, Engelbrecht V, Messing-Junger M, Reifenberger G, Gartner J (2002) Diagnostic difficulties in childhood bilateral thalamic astrocytomas. Neuropediatrics 33:331–335

    CAS  PubMed  Google Scholar 

  14. 14.

    Hirano T, Yasuda H, Tani T, Hamamoto J, Oashi A, Ishioka K et al (2015) In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget 6:38789–38803

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jain P, Mohamed A, Sigamani E, Suri V, Mahapatra AK, Kumar A et al (2013) Bilateral thalamic lesions in a child. Eur Neurol 70:33–34

    PubMed  Google Scholar 

  16. 16.

    Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, DeBiasi RM et al (2006) Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med 3:e485

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E, Onodera C et al (2017) Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro Oncol 19:699–709

    CAS  PubMed  Google Scholar 

  18. 18.

    Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520–537

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    CAS  PubMed  Google Scholar 

  20. 20.

    Messing-Junger AM, Floeth FW, Pauleit D, Reifenberger G, Willing R, Gartner J et al (2002) Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 18:445–449

    CAS  PubMed  Google Scholar 

  21. 21.

    Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G et al (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343:72–76

    CAS  PubMed  Google Scholar 

  22. 22.

    Niu X, Wang T, Yang Y, Gan Y, Li J, Liu Y et al (2018) Prognostic factors for the survival outcome of bilateral thalamic glioma: an integrated survival analysis. World Neurosurg 110:e222–e230

    PubMed  Google Scholar 

  23. 23.

    Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1–iv86

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Oxnard GR, Lo PC, Nishino M, Dahlberg SE, Lindeman NI, Butaney M et al (2013) Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J Thorac Oncol 8:179–184

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Pandey N, Singh PK, Mahapatra AK, Kakkar A, Sharma BS (2014) Pediatric bilateral large concurrent thalamic glioblastoma: an unusual case report. J Pediatr Neurosci 9:76–78

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Park JY, Cohen C, Lopez D, Ramos E, Wagenfuehr J, Rakheja D (2016) EGFR Exon 20 insertion/duplication mutations characterize fibrous hamartoma of infancy. Am J Surg Pathol 40:1713–1718

    PubMed  Google Scholar 

  27. 27.

    Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH et al (2010) Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol 98:93–99

    CAS  PubMed  Google Scholar 

  28. 28.

    Peruzzi L, Iuvone L, Ruggiero A, Colosimo C, Stefanini MC, Riccardi R (2016) Neuropsychological deterioration predicts tumor progression in a young boy with bithalamic glioma. Appl Neuropsychol Child 5:76–81

    PubMed  Google Scholar 

  29. 29.

    Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H et al (2009) Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 27:579–584

    CAS  PubMed  Google Scholar 

  30. 30.

    Rafique MZ, Ahmad MN, Yaqoob N, Ahsan H (2007) Diffuse bilateral thalamic astrocytoma. J Coll Phys Surg Pak 17:170–172

    Google Scholar 

  31. 31.

    Rajput DK, Mehrotra A, Srivastav AK, Kumar R, Mahapatra AK (2010) Bilateral thalamic glioma in a 6-year-old child. J Pediatr Neurosci 5:45–48

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S et al (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24:638–646

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ruan Z, Kannan N (2018) Altered conformational landscape and dimerization dependency underpins the activation of EGFR by αC-β4 loop insertion mutations. Proc Natl Acad Sci USA 115:e8162–e8171

    CAS  PubMed  Google Scholar 

  34. 34.

    Sarkaria JN, Yang L, Grogan PT, Kitange GJ, Carlson BL, Schroeder MA et al (2007) Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther 6:1167–1174

    CAS  PubMed  Google Scholar 

  35. 35.

    Sharaf AF, Hamouda ES, Teo JG (2016) Bilateral thalamic and right fronto-temporo-parietal gliomas in a 4 years old child diagnosed by magnetic resonance imaging. J Radiol Case Rep 10:1–13

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ et al (2016) Diffuse midline gliomas with histone H3–K27M mutation: A series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    CAS  PubMed  Google Scholar 

  37. 37.

    Sonoda Y, Ozawa T, Hirose Y, Aldape KD, McMahon M, Berger MS et al (2001) Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61:4956–4960

    CAS  PubMed  Google Scholar 

  38. 38.

    Steinbok P, Gopalakrishnan CV, Hengel AR, Vitali AM, Poskitt K, Hawkins C et al (2016) Pediatric thalamic tumors in the MRI era: a Canadian perspective. Childs Nerv Syst 32:269–280

    PubMed  Google Scholar 

  39. 39.

    Triche TJ, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD (2013) Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res 41:e90

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL et al (2012) Differential sensitivity of glioma-versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2:458–471

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS et al (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89:2965–2969

    CAS  PubMed  Google Scholar 

  42. 42.

    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yasuda H, Park E, Yun CH, Sng NJ, Lucena-Araujo AR, Yeo WL et al (2013) Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med 5:216ra177

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Yoshida M, Fushiki S, Takeuchi Y, Takanashi M, Imamura T, Shikata T et al (1998) Diffuse bilateral thalamic astrocytomas as examined serially by MRI. Childs Nerv Syst 14:384–388

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the UCSF Clinical Cancer Genomics Laboratory for assistance with genetic profiling. B.A. Orr is supported by the National Cancer Institute, National Institutes of Health (P30 CA021765) and the American Lebanese Syrian Associated Charities (ALSAC). D.A. Solomon is supported by the NIH Director’s Early Independence Award from the Office of the Director, National Institutes of Health (DP5 OD021403) and a Developmental Research Program Award from the UCSF Brain Tumor SPORE grant from the National Cancer Institute, National Institutes of Health (P50 CA097257).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David A. Solomon.

Ethics declarations

Conflict of interest

S.J. Allen is a current employee of Illumina, Inc. No potential conflicts of interest were disclosed by any of the other authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 243 kb)

Supplementary file2 (PDF 35187 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, G., Lee, J.C., Ravindranathan, A. et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol 139, 1071–1088 (2020). https://doi.org/10.1007/s00401-020-02155-5

Download citation

Keywords

  • Bithalamic glioma
  • Diffuse midline glioma
  • EGFR
  • Histone H3
  • Pediatric cancer
  • Molecular neuropathology
  • Tyrosine kinase inhibitor
  • Afatinib
  • Osimertinib
  • Erlotinib
  • Trametinib