Advertisement

Recurrent non-canonical histone H3 mutations in spinal cord diffuse gliomas

  • Emily A. Sloan
  • Tabitha Cooney
  • Nancy Ann Oberheim Bush
  • Robin Buerki
  • Jennie Taylor
  • Jennifer L. Clarke
  • Joseph Torkildson
  • Cassie Kline
  • Alyssa Reddy
  • Sabine Mueller
  • Anu Banerjee
  • Nicholas Butowski
  • Susan Chang
  • Praveen V. Mummaneni
  • Dean Chou
  • Lee Tan
  • Philip Theodosopoulos
  • Michael McDermott
  • Mitchel Berger
  • Corey Raffel
  • Nalin Gupta
  • Peter P. Sun
  • Yi Li
  • Vinil Shah
  • Soonmee Cha
  • Steve Braunstein
  • David R. Raleigh
  • David Samuel
  • David Scharnhorst
  • Cynthia Fata
  • Hua Guo
  • Gregory Moes
  • John Y. H. Kim
  • Carl Koschmann
  • Jessica Van Ziffle
  • Courtney Onodera
  • Patrick Devine
  • James P. Grenert
  • Julieann C. Lee
  • Melike Pekmezci
  • Joanna J. Phillips
  • Tarik Tihan
  • Andrew W. Bollen
  • Arie Perry
  • David A. SolomonEmail author
Correspondence

Somatic mutations in the H3F3A and HIST1H3B genes encoding the histone H3 variants H3.3 and H3.1, respectively, are important genetic drivers of diffuse gliomas in both children and adults. The recurrent p.K27M mutation in either H3F3A or HIST1H3B genes is found in the majority of diffuse gliomas centered in midline structures of the central nervous system including the thalamus, brainstem, and spinal cord where it is associated with poor prognosis irrespective of histologic grade [9, 10, 11]. “Diffuse midline glioma, H3 K27M-mutant” was thus classified as a grade IV entity in the revised 2016 WHO Classification of Tumors of the Central Nervous System. In contrast, p.G34R or p.G34V mutation in the H3F3A gene is found in a subset of glioblastomas located in the cerebral hemispheres of adolescents and young adults and is associated with a more favorable prognosis [6, 8, 9, 10]. While the genetic landscape of supratentorial and brainstem gliomas has now been extensively characterized [9, 11...

Notes

Acknowledgements

We thank the staff of the UCSF Clinical Cancer Genomics Laboratory for assistance with genetic profiling. This study was supported in part by the UCSF Glioblastoma Precision Medicine Program. D.A.S. is supported by the NIH Director’s Early Independence Award (DP5 OD021403).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests related to this report.

Ethical approval

This study was approved by the Committee on Human Research of the University of California, San Francisco, with a waiver of patient consent.

Supplementary material

401_2019_2072_MOESM1_ESM.xlsx (37 kb)
Supplementary file1 (XLSX 36 kb)
401_2019_2072_MOESM2_ESM.pdf (294 kb)
Supplementary file2 (PDF 293 kb)

References

  1. 1.
    Alvi MA, Ida CM, Paolini MA, Kerezoudis P, Meyer J, Barr Fritcher EG et al (2019) Spinal cord high-grade infiltrating gliomas in adults: clinico-pathological and molecular evaluation. Mod Pathol.  https://doi.org/10.1038/s41379-019-0271-3 (Epub 2019 Apr 26) CrossRefPubMedGoogle Scholar
  2. 2.
    Amary F, Berisha F, Ye H, Gupta M, Gutteridge A, Baumhoer D et al (2017) H3F3A (Histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant giant cell tumor of bone. Am J Surg Pathol 41:1059–1068CrossRefGoogle Scholar
  3. 3.
    Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45:1479–1482CrossRefGoogle Scholar
  4. 4.
    Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:985–990CrossRefGoogle Scholar
  5. 5.
    Cleven AH, Hocker S, Briaire-de Bruijn I, Szuhai K, Cleton-Jansen AM, Bovee JV (2015) Mutation analysis of H3F3A and H3F3B as a diagnostic tool for giant cell tumor of bone and chondroblastoma. Am J Surg Pathol 39:1576–1583CrossRefGoogle Scholar
  6. 6.
    Gessi M, Gielen GH, Hammes J, Dorner E, Muhlen AZ, Waha A et al (2013) H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neurooncol 112:67–72CrossRefGoogle Scholar
  7. 7.
    Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E, Onodera C et al (2017) Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncol 19:699–709PubMedGoogle Scholar
  8. 8.
    Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131:137–146CrossRefGoogle Scholar
  9. 9.
    Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520–537CrossRefGoogle Scholar
  10. 10.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437CrossRefGoogle Scholar
  11. 11.
    Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emily A. Sloan
    • 1
  • Tabitha Cooney
    • 2
    • 3
  • Nancy Ann Oberheim Bush
    • 4
    • 5
  • Robin Buerki
    • 4
  • Jennie Taylor
    • 4
    • 5
  • Jennifer L. Clarke
    • 4
    • 5
  • Joseph Torkildson
    • 2
    • 3
  • Cassie Kline
    • 3
    • 5
  • Alyssa Reddy
    • 3
    • 5
  • Sabine Mueller
    • 3
    • 5
    • 6
  • Anu Banerjee
    • 3
    • 6
  • Nicholas Butowski
    • 4
  • Susan Chang
    • 4
  • Praveen V. Mummaneni
    • 6
  • Dean Chou
    • 6
  • Lee Tan
    • 6
  • Philip Theodosopoulos
    • 6
  • Michael McDermott
    • 6
  • Mitchel Berger
    • 6
  • Corey Raffel
    • 6
  • Nalin Gupta
    • 6
  • Peter P. Sun
    • 7
  • Yi Li
    • 8
  • Vinil Shah
    • 8
  • Soonmee Cha
    • 8
  • Steve Braunstein
    • 9
  • David R. Raleigh
    • 6
    • 9
  • David Samuel
    • 10
  • David Scharnhorst
    • 11
  • Cynthia Fata
    • 11
  • Hua Guo
    • 12
  • Gregory Moes
    • 13
  • John Y. H. Kim
    • 14
  • Carl Koschmann
    • 15
  • Jessica Van Ziffle
    • 1
    • 16
  • Courtney Onodera
    • 1
    • 16
  • Patrick Devine
    • 1
    • 16
  • James P. Grenert
    • 1
    • 16
  • Julieann C. Lee
    • 1
  • Melike Pekmezci
    • 1
  • Joanna J. Phillips
    • 1
    • 6
  • Tarik Tihan
    • 1
  • Andrew W. Bollen
    • 1
  • Arie Perry
    • 1
    • 6
  • David A. Solomon
    • 1
    • 16
    Email author
  1. 1.Department of PathologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Hematology/OncologyUCSF Benioff Children’s Hospital OaklandOaklandUSA
  3. 3.Division of Pediatric Hematology/Oncology, Department of PediatricsUniversity of CaliforniaSan FranciscoUSA
  4. 4.Division of Neuro-Oncology, Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoUSA
  5. 5.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  6. 6.Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoUSA
  7. 7.Department of Neurological SurgeryUniversity of California, San Francisco at UCSF Benioff Children’s Hospital OaklandOaklandUSA
  8. 8.Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoUSA
  9. 9.Department of Radiation OncologyUniversity of CaliforniaSan FranciscoUSA
  10. 10.Department of Hematology/OncologyValley Children’s HospitalMaderaUSA
  11. 11.Department of PathologyValley Children’s HospitalMaderaUSA
  12. 12.Department of PathologyUCSF Benioff Children’s Hospital OaklandOaklandUSA
  13. 13.Department of PathologyOaklandUSA
  14. 14.Department of Pediatric NeurosurgeryKaiser Permanente Oakland Medical CenterOaklandUSA
  15. 15.Division of Pediatric Hematology/Oncology, Department of PediatricsUniversity of MichiganAnn ArborUSA
  16. 16.Clinical Cancer Genomics LaboratoryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations