Skip to main content

Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1


Rosette-forming glioneuronal tumor (RGNT) is a rare brain neoplasm that primarily affects young adults. Although alterations affecting the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathway have been associated with this low-grade entity, comprehensive molecular investigations of RGNT in larger series have not been performed to date, and an integrated view of their genetic and epigenetic profiles is still lacking. Here we describe a genome-wide DNA methylation and targeted sequencing-based characterization of a molecularly distinct class of tumors (n = 30), initially identified through genome-wide DNA methylation screening among a cohort of > 30,000 tumors, of which most were diagnosed histologically as RGNT. FGFR1 hotspot mutations were observed in all tumors analyzed, with co-occurrence of PIK3CA mutations in about two-thirds of the cases (63%). Additional loss-of-function mutations in the tumor suppressor gene NF1 were detected in a subset of cases (33%). Notably, in contrast to most other low-grade gliomas, these tumors often displayed co-occurrence of two or even all three of these mutations. Our data highlight that molecularly defined RGNTs are characterized by highly recurrent combined genetic alterations affecting both MAPK and PI3K signaling pathways. Thus, these two pathways appear to synergistically interact in the formation of RGNT, and offer potential therapeutic targets for this disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Allinson KS, O’Donovan DG, Jena R, Cross JJ, Santarius TS (2015) Rosette-forming glioneuronal tumor with dissemination throughout the ventricular system: a case report. Clin Neuropathol 34:64–69.

    Article  PubMed  Google Scholar 

  2. 2.

    Anan M, Inoue R, Ishii K, Abe T, Fujiki M, Kobayashi H et al (2009) A rosette-forming glioneuronal tumor of the spinal cord: the first case of a rosette-forming glioneuronal tumor originating from the spinal cord. Hum Pathol 40:898–901.

    Article  PubMed  Google Scholar 

  3. 3.

    Cachia D, Prado MP, Theeler B, Hamilton J, McCutcheon I, Fuller GN (2014) Synchronous rosette-forming glioneuronal tumor and diffuse astrocytoma with molecular characterization: a case report. Clin Neuropathol 33:407–411.

    Article  PubMed  Google Scholar 

  4. 4.

    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ellezam B, Theeler BJ, Luthra R, Adesina AM, Aldape KD, Gilbert MR (2012) Recurrent PIK3CA mutations in rosette-forming glioneuronal tumor. Acta Neuropathol 123:285–287.

    Article  PubMed  Google Scholar 

  6. 6.

    Gessi M, Lambert SR, Lauriola L, Waha A, Collins VP, Pietsch T (2012) Absence of KIAA1549-BRAF fusion in rosette-forming glioneuronal tumors of the fourth ventricle (RGNT). J Neurooncol 110:21–25.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Gessi M, Moneim YA, Hammes J, Goschzik T, Scholz M, Denkhaus D et al (2014) FGFR1 mutations in Rosette-forming glioneuronal tumors of the fourth ventricle. J Neuropathol Exp Neurol 73:580–584.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA, Fischer R et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125:913–916.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jacques TS, Eldridge C, Patel A, Saleem NM, Powell M, Kitchen ND et al (2006) Mixed glioneuronal tumour of the fourth ventricle with prominent rosette formation. Neuropathol Appl Neurobiol 32:217–220.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Karafin M, Jallo GI, Ayars M, Eberhart CG, Rodriguez FJ (2011) Rosette forming glioneuronal tumor in association with Noonan syndrome: pathobiological implications. Clin Neuropathol 30:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kemp S, Achan A, Ng T, Dexter MA (2012) Rosette-forming glioneuronal tumour of the lateral ventricle in a patient with neurofibromatosis 1. J Clin Neurosci 19:1180–1181.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Komori T, Scheithauer BW, Hirose T (2002) A rosette-forming glioneuronal tumor of the fourth ventricle: infratentorial form of dysembryoplastic neuroepithelial tumor? Am J Surg Pathol 26:582–591

    Article  PubMed  Google Scholar 

  15. 15.

    Lasorella A, Sanson M, Iavarone A (2017) FGFR-TACC gene fusions in human glioma. Neuro Oncol 19:475–483.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Lin FY, Bergstrom K, Person R, Bavle A, Ballester LY, Scollon S et al (2016) Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle. Cold Spring Harb Mol Case Stud 2:a001057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D et al (2016) WHO classification of tumours of the central nervous system, Revised, 4th edn. IARC, Lyon

    Google Scholar 

  18. 18.

    McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG et al (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7:e1001138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Preusser M, Dietrich W, Czech T, Prayer D, Budka H, Hainfellner JA (2003) Rosette-forming glioneuronal tumor of the fourth ventricle. Acta Neuropathol 106:506–508.

    Article  PubMed  Google Scholar 

  20. 20.

    Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD et al (2016) Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 131:833–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Rivera B, Gayden T, Carrot-Zhang J, Nadaf J, Boshari T, Faury D et al (2016) Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol 131:847–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B et al (2011) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121:407–420.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Rosenblum MK (2007) The 2007 WHO classification of nervous system tumors: newly recognized members of the mixed glioneuronal group. Brain Pathol 17:308–313.

    Article  PubMed  Google Scholar 

  24. 24.

    Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Schlamann A, von Bueren AO, Hagel C, Zwiener I, Seidel C, Kortmann RD et al (2014) An individual patient data meta-analysis on characteristics and outcome of patients with papillary glioneuronal tumor, rosette glioneuronal tumor with neuropil-like islands and rosette forming glioneuronal tumor of the fourth ventricle. PLoS One 9:e101211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sievers P, Stichel D, Schrimpf D, Sahm F, Koelsche C, Reuss DE et al (2018) FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma. Acta Neuropathol 136:293–302.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437.

    Article  CAS  Google Scholar 

  28. 28.

    Thommen F, Hewer E, Schafer SC, Vassella E, Kappeler A, Vajtai I (2013) Rosette-forming glioneuronal tumor of the cerebellum in statu nascendi: an incidentally detected diminutive example indicates derivation from the internal granule cell layer. Clin Neuropathol 32:370–376.

    Article  PubMed  Google Scholar 

  29. 29.

    Xu J, Yang Y, Liu Y, Wei M, Ren J, Chang Y et al (2012) Rosette-forming glioneuronal tumor in the pineal gland and the third ventricle: a case with radiological and clinical implications. Quant Imaging Med Surg 2:227–231.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank H. Y. Nguyen, L. Dörner, V. Zeller, U. Lass, and J. Meyer for excellent technical support and the microarray unit of the DKFZ Genomics and Proteomics Core Facility for providing Illumina DNA methylation array-related services. We also thank the AP-HM Tumor Bank (authorization number: AC2018-31053; CRB BB-0033-00097) for providing tissue samples and the French National Cancer Institute (INCa) pathology network RENOCLIP-LOC (Clinical Pathology Neuro-Oncology Network for Rare Tumors of the Nervous System) for the histological review. D. Jones is supported by the Everest Centre for Low-grade Paediatric Brain Tumours (The Brain Tumour Charity, UK). F. Sahm is a fellow of the Else Kröner Excellence Program of the Else Kröner-Fresenius Stiftung (EKFS; 2017_EKES.24). S. Brandner is supported by the UK Department of Health’s NIHR Biomedical Research Centre’s funding scheme. This work was funded by the GCS GIRCI (Groupement Interrégional de Recherche Clinique et d’Innovation) Méditerranée (GlioMark project promoted by the AP-HM).

Author information



Corresponding authors

Correspondence to Felix Sahm or David T. W. Jones.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4272 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sievers, P., Appay, R., Schrimpf, D. et al. Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1. Acta Neuropathol 138, 497–504 (2019).

Download citation


  • Rosette-forming glioneuronal tumor
  • RGNT
  • Brain tumor
  • DNA methylation profile
  • Molecular classification
  • MAPK
  • PI3K
  • FGFR1
  • PIK3CA
  • NF1