Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer’s disease

  • Philippe Bourassa
  • Cyntia Tremblay
  • Julie A. Schneider
  • David A. Bennett
  • Frédéric CalonEmail author
Original Paper


Several pieces of evidence suggest that blood–brain barrier (BBB) dysfunction is implicated in the pathophysiology of Alzheimer’s disease (AD), exemplified by the frequent occurrence of cerebral amyloid angiopathy (CAA) and the defective clearance of Aβ peptides. However, the specific role of brain microvascular cells in these anomalies remains elusive. In this study, we validated by Western, ELISA and immunofluorescence analyses a procedure to generate microvasculature-enriched fractions from frozen samples of human cerebral cortex. We then investigated Aβ and proteins involved in its clearance or production in microvessel extracts generated from the parietal cortex of 60 volunteers in the Religious Orders Study. Volunteers were categorized as AD (n = 38) or controls (n = 22) based on the ABC scoring method presented in the revised guidelines for the neuropathological diagnosis of AD. Higher ELISA-determined concentrations of vascular Aβ40 and Aβ42 were found in persons with a neuropathological diagnosis of AD, in apoE4 carriers and in participants with advanced parenchymal CAA, compared to respective age-matched controls. Vascular levels of two proteins involved in Aβ clearance, ABCB1 and neprilysin, were lower in persons with AD and positively correlated with cognitive function, while being inversely correlated to vascular Aβ40. In contrast, BACE1, a protein necessary for Aβ production, was increased in individuals with AD and in apoE4 carriers, negatively correlated to cognitive function and positively correlated to Aβ40 in microvessel extracts. The present report indicates that concentrating microvessels from frozen human brain samples facilitates the quantitative biochemical analysis of cerebrovascular dysfunction in CNS disorders. Data generated overall show that microvessels extracted from individuals with parenchymal CAA–AD contained more Aβ and BACE1 and less ABCB1 and neprilysin, evidencing a pattern of dysfunction in brain microvascular cells contributing to CAA and AD pathology and symptoms.


Blood–brain barrier Brain microvascular cells Alzheimer’s disease Cerebral amyloid angiopathy Beta-amyloid 



Funding was provided by the Canadian Institutes of Health Research (CIHR) to F.C (MOP 125930). The study was supported in part by P30AG10161 and R01AG15819 (D.A.B). F.C is a Fonds de recherche du Québec-Santé (FRQ-S) senior research scholar. P.B held scholarships from the Réseau québécois de recherche sur le médicament (RQRM), Fondation du CHU de Québec and a joined scholarship from the FRQ-S and the Alzheimer Society of Canada (ASC) and now holds a scholarship from the CIHR. The authors are thankful to Gregory Klein, from the Rush Alzheimer’s Disease Research Center, for his assistance with data related to our cohort. The authors are indebted to the nuns, priests and brothers from the Catholic clergy participating in the Religious Orders Study. The authors are thankful to Dr. Vincent Émond for his proofreading of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

401_2019_1967_MOESM1_ESM.pdf (289 kb)
Supplementary material 1 (PDF 290 kb)


  1. 1.
    Aggarwal NT, Wilson RS, Beck TL, Bienias JL, Bennett DA (2005) Mild cognitive impairment in different functional domains and incident Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:1479–1484CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alata W, Paris-Robidas S, Emond V, Bourasset F, Calon F (2014) Brain uptake of a fluorescent vector targeting the transferrin receptor: a novel application of in situ brain perfusion. Mol Pharm 11:243–253CrossRefPubMedGoogle Scholar
  3. 3.
    Alata W, Ye Y, St-Amour I, Vandal M, Calon F (2015) Human apolipoprotein E varepsilon4 expression impairs cerebral vascularization and blood–brain barrier function in mice. J Cereb Blood Flow Metab 35:86–94CrossRefPubMedGoogle Scholar
  4. 4.
    Alonzo NC, Hyman BT, Rebeck GW, Greenberg SM (1998) Progression of cerebral amyloid angiopathy: accumulation of amyloid-beta40 in affected vessels. J Neuropathol Exp Neurol 57:353–359CrossRefPubMedGoogle Scholar
  5. 5.
    Arvanitakis Z, Grodstein F, Bienias JL, Schneider JA, Wilson RS, Kelly JF et al (2008) Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology 70:2219–2225CrossRefPubMedGoogle Scholar
  6. 6.
    Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA (2011) Microinfarct pathology, dementia, and cognitive systems. Stroke 42:722–727CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA (2011) Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol 69:320–327CrossRefPubMedGoogle Scholar
  8. 8.
    Arvanitakis Z, Schneider JA, Wilson RS, Bienias JL, Kelly JF, Evans DA et al (2008) Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology 70:1795–1802CrossRefPubMedGoogle Scholar
  9. 9.
    Attems J, Lintner F, Jellinger KA (2004) Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol 107:283–291CrossRefPubMedGoogle Scholar
  10. 10.
    Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bennett DA (2006) Postmortem indices linking risk factors to cognition: results from the religious order study and the memory and aging project. Alzheimer Dis Assoc Disord 20:S63–S68CrossRefPubMedGoogle Scholar
  12. 12.
    Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis Z, Shah RC, Kelly JF et al (2006) Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology 27:169–176CrossRefPubMedGoogle Scholar
  13. 13.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844CrossRefPubMedGoogle Scholar
  14. 14.
    Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS (2012) Overview and findings from the religious orders study. Curr Alzheimer Res 9:628–645CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS (2005) Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 64:834–841CrossRefPubMedGoogle Scholar
  16. 16.
    Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT et al (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205CrossRefPubMedGoogle Scholar
  17. 17.
    Biffi A, Greenberg SM (2011) Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 7:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Boulay AC, Saubamea B, Decleves X, Cohen-Salmon M (2015) Purification of Mouse Brain Vessels. J Vis Exp e53208Google Scholar
  19. 19.
    Boyle PA, Yu L, Nag S, Leurgans S, Wilson RS, Bennett DA et al (2015) Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85:1930–1936CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedGoogle Scholar
  21. 21.
    Buee L, Hof PR, Bouras C, Delacourte A, Perl DP, Morrison JH et al (1994) Pathological alterations of the cerebral microvasculature in Alzheimer’s disease and related dementing disorders. Acta Neuropathol 87:469–480CrossRefPubMedGoogle Scholar
  22. 22.
    Buee L, Hof PR, Delacourte A (1997) Brain microvascular changes in Alzheimer’s disease and other dementias. Ann N Y Acad Sci 826:7–24CrossRefPubMedGoogle Scholar
  23. 23.
    Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M (2002) Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:849–856CrossRefPubMedGoogle Scholar
  24. 24.
    Caselli RJ, Walker D, Sue L, Sabbagh M, Beach T (2010) Amyloid load in nondemented brains correlates with APOE e4. Neurosci Lett 473:168–171CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen KL, Wang SS, Yang YY, Yuan RY, Chen RM, Hu CJ (2009) The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 378:57–61CrossRefPubMedGoogle Scholar
  26. 26.
    Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB et al (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dai M, Lin Y, El-Amouri SS, Kohls M, Pan D (2018) Comprehensive evaluation of blood–brain barrier-forming micro-vasculatures: reference and marker genes with cellular composition. PLoS One 13:e0197379CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Davis-Salinas J, Saporito-Irwin SM, Cotman CW, Van Nostrand WE (1995) Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells. J Neurochem 65:931–934CrossRefPubMedGoogle Scholar
  29. 29.
    Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Devraj K, Poznanovic S, Spahn C, Schwall G, Harter PN, Mittelbronn M et al (2016) BACE-1 is expressed in the blood–brain barrier endothelium and is upregulated in a murine model of Alzheimer’s disease. J Cereb Blood Flow Metab 36:1281–1294CrossRefPubMedGoogle Scholar
  31. 31.
    Do TM, Alata W, Dodacki A, Traversy MT, Chacun H, Pradier L et al (2014) Altered cerebral vascular volumes and solute transport at the blood–brain barriers of two transgenic mouse models of Alzheimer’s disease. Neuropharmacology 81:311–317CrossRefPubMedGoogle Scholar
  32. 32.
    Donahue JE, Flaherty SL, Johanson CE, Duncan JA 3rd, Silverberg GD, Miller MC et al (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 112:405–415CrossRefPubMedGoogle Scholar
  33. 33.
    Engelborghs S, Maertens K, Vloeberghs E, Aerts T, Somers N, Marien P et al (2006) Neuropsychological and behavioural correlates of CSF biomarkers in dementia. Neurochem Int 48:286–295CrossRefPubMedGoogle Scholar
  34. 34.
    Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611CrossRefPubMedGoogle Scholar
  36. 36.
    Farris W, Schutz SG, Cirrito JR, Shankar GM, Sun X, George A et al (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171:241–251CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Garrigues A, Escargueil AE, Orlowski S (2002) The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. Proc Natl Acad Sci USA 99:10347–10352CrossRefPubMedGoogle Scholar
  38. 38.
    Gravina SA, Ho L, Eckman CB, Long KE, Otvos L Jr, Younkin LH et al (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270:7013–7016CrossRefPubMedGoogle Scholar
  39. 39.
    Haglund M, Passant U, Sjobeck M, Ghebremedhin E, Englund E (2006) Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia. Int J Geriatr Psychiatry 21:681–687CrossRefPubMedGoogle Scholar
  40. 40.
    Harris R, Miners JS, Allen S, Love S (2018) VEGFR1 and VEGFR2 in Alzheimer’s disease. J Alzheimers Dis 61:741–752CrossRefPubMedGoogle Scholar
  41. 41.
    Hartz AM, Zhong Y, Wolf A, LeVine H 3rd, Miller DS, Bauer B (2016) Abeta40 reduces P-glycoprotein at the blood–brain barrier through the ubiquitin–proteasome pathway. J Neurosci 36:1930–1941CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hartz AMS, Zhong Y, Shen AN, Abner EL, Bauer B (2018) Preventing P-gp ubiquitination lowers Abeta brain levels in an Alzheimer’s disease mouse model. Front Aging Neurosci 10:186CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JA, Carare RO (2012) Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon4 allele. PLoS One 7:e41636CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Huang YA, Zhou B, Wernig M, Sudhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and abeta secretion. Cell 168(427–441):e421Google Scholar
  45. 45.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Julien C, Tremblay C, Bendjelloul F, Phivilay A, Coulombe MA, Emond V et al (2008) Decreased drebrin mRNA expression in Alzheimer disease: correlation with tau pathology. J Neurosci Res 86:2292–2302CrossRefPubMedGoogle Scholar
  48. 48.
    Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA et al (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kakuda N, Miyasaka T, Iwasaki N, Nirasawa T, Wada-Kakuda S, Takahashi-Fujigasaki J et al (2017) Distinct deposition of amyloid-beta species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun 5:73CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kalaria RN, Harik SI (1989) Reduced glucose transporter at the blood–brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem 53:1083–1088CrossRefPubMedGoogle Scholar
  51. 51.
    Kalaria RN, Pax AB (1995) Increased collagen content of cerebral microvessels in Alzheimer’s disease. Brain Res 705:349–352CrossRefPubMedGoogle Scholar
  52. 52.
    Kalaria RN, Premkumar DR, Pax AB, Cohen DL, Lieberburg I (1996) Production and increased detection of amyloid beta protein and amyloidogenic fragments in brain microvessels, meningeal vessels and choroid plexus in Alzheimer’s disease. Brain Res Mol Brain Res 35:58–68CrossRefPubMedGoogle Scholar
  53. 53.
    Kapasi A, Schneider JA (2016) Vascular contributions to cognitive impairment, clinical Alzheimer’s disease, and dementia in older persons. Biochim Biophys Acta 1862:878–886CrossRefPubMedGoogle Scholar
  54. 54.
    Keage HA, Carare RO, Friedland RP, Ince PG, Love S, Nicoll JA et al (2009) Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review. BMC Neurol 9:3CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kuhn PH, Marjaux E, Imhof A, De Strooper B, Haass C, Lichtenthaler SF (2007) Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase. J Biol Chem 282:11982–11995CrossRefPubMedGoogle Scholar
  56. 56.
    Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I et al (2007) MDR1-P-Glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-beta peptides: implications for the mechanisms of Abeta clearance at the blood–brain barrier. Brain Pathol 17:347–353CrossRefPubMedGoogle Scholar
  57. 57.
    Lachno DR, Evert BA, Vanderstichele H, Robertson M, Demattos RB, Konrad RJ et al (2013) Validation of assays for measurement of amyloid-beta peptides in cerebrospinal fluid and plasma specimens from patients with Alzheimer’s disease treated with solanezumab. J Alzheimers Dis 34:897–910CrossRefPubMedGoogle Scholar
  58. 58.
    Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, Reiner PB (2001) beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128CrossRefPubMedGoogle Scholar
  59. 59.
    Lepelletier FX, Mann DM, Robinson AC, Pinteaux E, Boutin H (2017) Early changes in extracellular matrix in Alzheimer’s disease. Neuropathol Appl Neurobiol 43:167–182CrossRefPubMedGoogle Scholar
  60. 60.
    Love S, Miners JS (2016) Cerebrovascular disease in ageing and Alzheimer’s disease. Acta Neuropathol 131:645–658CrossRefPubMedGoogle Scholar
  61. 61.
    Maccarrone M, Fiori A, Bari M, Granata F, Gasperi V, De Stefano ME et al (2006) Regulation by cannabinoid receptors of anandamide transport across the blood–brain barrier and through other endothelial cells. Thromb Haemost 95:117–127CrossRefPubMedGoogle Scholar
  62. 62.
    Mann DM, Iwatsubo T, Pickering-Brown SM, Owen F, Saido TC, Perry RH (1997) Preferential deposition of amyloid beta protein (Abeta) in the form Abeta40 in Alzheimer’s disease is associated with a gene dosage effect of the apolipoprotein E E4 allele. Neurosci Lett 221:81–84CrossRefPubMedGoogle Scholar
  63. 63.
    Mar AC, Chu CH, Lee HJ, Chien CW, Cheng JJ, Yang SH et al (2015) Interleukin-1 receptor type 2 acts with c-Fos to enhance the expression of interleukin-6 and vascular endothelial growth factor A in colon cancer cells and induce angiogenesis. J Biol Chem 290:22212–22224CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Mattsson N, Tosun D, Insel PS, Simonson A, Jack CR Jr, Beckett LA et al (2014) Association of brain amyloid-beta with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain 137:1550–1561CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Miller MC, Tavares R, Johanson CE, Hovanesian V, Donahue JE, Gonzalez L et al (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res 1230:273–280CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Miners JS, Kehoe P, Love S (2011) Neprilysin protects against cerebral amyloid angiopathy and Abeta-induced degeneration of cerebrovascular smooth muscle cells. Brain Pathol 21:594–605PubMedGoogle Scholar
  68. 68.
    Miners JS, Van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J Neuropathol Exp Neurol 65:1012–1021CrossRefPubMedGoogle Scholar
  69. 69.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486CrossRefPubMedGoogle Scholar
  70. 70.
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11CrossRefPubMedGoogle Scholar
  71. 71.
    Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ (2012) The Alzheimer’s amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimers Dis 2012:383796PubMedPubMedCentralGoogle Scholar
  72. 72.
    Natte R, de Boer WI, Maat-Schieman ML, Baelde HJ, Vinters HV, Roos RA et al (1999) Amyloid beta precursor protein-mRNA is expressed throughout cerebral vessel walls. Brain Res 828:179–183CrossRefPubMedGoogle Scholar
  73. 73.
    Parnetti L, Lanari A, Silvestrelli G, Saggese E, Reboldi P (2006) Diagnosing prodromal Alzheimer’s disease: role of CSF biochemical markers. Mech Ageing Dev 127:129–132CrossRefPubMedGoogle Scholar
  74. 74.
    Pfeifer LA, White LR, Ross GW, Petrovitch H, Launer LJ (2002) Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurology 58:1629–1634CrossRefPubMedGoogle Scholar
  75. 75.
    Piert M, Koeppe RA, Giordani B, Berent S, Kuhl DE (1996) Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. J Nucl Med 37:201–208PubMedGoogle Scholar
  76. 76.
    Renard D, Castelnovo G, Wacongne A, Le Floch A, Thouvenot E, Mas J et al (2012) Interest of CSF biomarker analysis in possible cerebral amyloid angiopathy cases defined by the modified Boston criteria. J Neurol 259:2429–2433CrossRefPubMedGoogle Scholar
  77. 77.
    Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B et al (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62:885–898CrossRefPubMedGoogle Scholar
  78. 78.
    Schneider JA (2009) High blood pressure and microinfarcts: a link between vascular risk factors, dementia, and clinical Alzheimer’s disease. J Am Geriatr Soc 57:2146–2147CrossRefPubMedGoogle Scholar
  79. 79.
    Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B et al (2000) Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J Clin Invest 106:1489–1499CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K et al (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276:21895–21901CrossRefPubMedGoogle Scholar
  81. 81.
    Szabady RL, Louissaint C, Lubben A, Xie B, Reeksting S, Tuohy C et al (2018) Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J Clin Invest 128:4044–4056CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tanskanen M, Lindsberg PJ, Tienari PJ, Polvikoski T, Sulkava R, Verkkoniemi A et al (2005) Cerebral amyloid angiopathy in a 95+ cohort: complement activation and apolipoprotein E (ApoE) genotype. Neuropathol Appl Neurobiol 31:589–599CrossRefPubMedGoogle Scholar
  83. 83.
    Thal DR, Ghebremedhin E, Rub U, Yamaguchi H, Del Tredici K, Braak H (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:282–293CrossRefPubMedGoogle Scholar
  84. 84.
    Thal DR, Griffin WS, de Vos RA, Ghebremedhin E (2008) Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 115:599–609CrossRefPubMedGoogle Scholar
  85. 85.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefPubMedGoogle Scholar
  86. 86.
    Thomsen MS, Routhe LJ, Moos T (2017) The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 271678X17722436Google Scholar
  87. 87.
    Traversy MT, Vandal M, Tremblay C, Tournissac M, Giguere-Rancourt A, Bennett AD et al (2017) Altered cerebral insulin response in transgenic mice expressing the epsilon-4 allele of the human apolipoprotein E gene. Psychoneuroendocrinology 77:203–210CrossRefPubMedGoogle Scholar
  88. 88.
    Tremblay C, Francois A, Delay C, Freland L, Vandal M, Bennett DA et al (2017) Association of neuropathological markers in the parietal cortex with antemortem cognitive function in persons with mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol 76:70–88Google Scholar
  89. 89.
    Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F (2007) Biochemical characterization of Abeta and tau pathologies in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 12:377–390CrossRefPubMedGoogle Scholar
  90. 90.
    Tremblay C, St-Amour I, Schneider J, Bennett DA, Calon F (2011) Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol 70:788–798CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    van Assema DM, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD et al (2012) Blood–brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 135:181–189CrossRefPubMedGoogle Scholar
  92. 92.
    van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P et al (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87:507–517CrossRefPubMedGoogle Scholar
  93. 93.
    Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480CrossRefPubMedGoogle Scholar
  94. 94.
    Verbeek MM, Kremer BP, Rikkert MO, Van Domburg PH, Skehan ME, Greenberg SM (2009) Cerebrospinal fluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. Ann Neurol 66:245–249CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18:311–324PubMedGoogle Scholar
  96. 96.
    Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W et al (2002) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541CrossRefPubMedGoogle Scholar
  97. 97.
    Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, Romero IA, Weksler B, Stanimirovic DB, Zhang W (2009) Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK–AP1 signaling pathway. Neurobiol Dis 34:95–106CrossRefPubMedGoogle Scholar
  98. 98.
    Wang E, Casciano CN, Clement RP, Johnson WW (2000) Cholesterol interaction with the daunorubicin binding site of P-glycoprotein. Biochem Biophys Res Commun 276:909–916CrossRefPubMedGoogle Scholar
  99. 99.
    Wang S, Qaisar U, Yin X, Grammas P (2012) Gene expression profiling in Alzheimer’s disease brain microvessels. J Alzheimers Dis 31:193–205CrossRefPubMedGoogle Scholar
  100. 100.
    Wang S, Wang R, Chen L, Bennett DA, Dickson DW, Wang DS (2010) Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer’s brain. J Neurochem 115:47–57CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Weller RO, Preston SD, Subash M, Carare RO (2009) Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 1:6CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA (2010) ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res 1358:228–238CrossRefPubMedGoogle Scholar
  103. 103.
    Wilhelmus MM, Otte-Holler I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G et al (2007) Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 171:1989–1999CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Wilson RS, Beckett LA, Barnes LL, Schneider JA, Bach J, Evans DA et al (2002) Individual differences in rates of change in cognitive abilities of older persons. Psychol Aging 17:179–193CrossRefPubMedGoogle Scholar
  105. 105.
    Xue ZQ, He ZW, Yu JJ, Cai Y, Qiu WY, Pan A et al (2015) Non-neuronal and neuronal BACE1 elevation in association with angiopathic and leptomeningeal beta-amyloid deposition in the human brain. BMC Neurol 15:71CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Xuereb JH, Brayne C, Dufouil C, Gertz H, Wischik C, Harrington C et al (2000) Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Ann N Y Acad Sci 903:490–496CrossRefPubMedGoogle Scholar
  107. 107.
    Yamada M (2002) Risk factors for cerebral amyloid angiopathy in the elderly. Ann N Y Acad Sci 977:37–44CrossRefPubMedGoogle Scholar
  108. 108.
    Yamazaki Y, Kanekiyo T (2017) Blood–brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci 18:1965CrossRefPubMedCentralGoogle Scholar
  109. 109.
    Yousif S, Marie-Claire C, Roux F, Scherrmann JM, Decleves X (2007) Expression of drug transporters at the blood–brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res 1134:1–11CrossRefPubMedGoogle Scholar
  110. 110.
    Zarow C, Barron E, Chui HC, Perlmutter LS (1997) Vascular basement membrane pathology and Alzheimer’s disease. Ann N Y Acad Sci 826:147–160CrossRefPubMedGoogle Scholar
  111. 111.
    Zenaro E, Piacentino G, Constantin G (2017) The blood–brain barrier in Alzheimer’s disease. Neurobiol Dis 107:41–56CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculté de pharmacie, Université LavalQuebecCanada
  2. 2.Axe NeurosciencesCentre de recherche du CHU de Québec-Université LavalQuebecCanada
  3. 3.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA

Personalised recommendations