Acta Neuropathologica

, Volume 136, Issue 4, pp 621–639 | Cite as

Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson’s disease

  • Gaia Faustini
  • Francesca Longhena
  • Tatiana Varanita
  • Luigi Bubacco
  • Marina Pizzi
  • Cristina Missale
  • Fabio Benfenati
  • Anders Björklund
  • PierFranco Spano
  • Arianna BellucciEmail author
Original Paper


Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of nigral dopamine neurons. The deposition of fibrillary aggregated α-synuclein in Lewy bodies (LB), that is considered to play a causative role in the disease, constitutes another key neuropathological hallmark of PD. We have recently described that synapsin III (Syn III), a synaptic phosphoprotein that regulates dopamine release in cooperation with α-synuclein, is present in the α-synuclein insoluble fibrils composing the LB of patients affected by PD. Moreover, we observed that silencing of Syn III gene could prevent α-synuclein fibrillary aggregation in vitro. This evidence suggests that Syn III might be crucially involved in α-synuclein pathological deposition. To test this hypothesis, we studied whether mice knock-out (ko) for Syn III might be protected from α-synuclein aggregation and nigrostriatal neuron degeneration resulting from the unilateral injection of adeno-associated viral vectors (AAV)-mediating human wild-type (wt) α-synuclein overexpression (AAV-hαsyn). We found that Syn III ko mice injected with AAV-hαsyn did not develop fibrillary insoluble α-synuclein aggregates, showed reduced amount of α-synuclein oligomers detected by in situ proximity ligation assay (PLA) and lower levels of Ser129-phosphorylated α-synuclein. Moreover, the nigrostriatal neurons of Syn III ko mice were protected from both synaptic damage and degeneration triggered by the AAV-hαsyn injection. Our observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.


Syn III α-Synuclein aggregation AAV Nigrostriatal degeneration Synaptic proteins alterations 


Author contributions

Conceptualization GF, PS and AB; Methodology, GF, FL, TV and AB; Investigation, GF, FL, TV, LB and AB; Writing-original draft, GF, PS and AB; Writing-review and editing, GF, LB, MP, CM, FB, AnB, and AB; Funding Acquisition, AB; Resources, LB, FB, AnB and AB; Supervision, AnB, AB.


This work was supported by the Michael J. Fox Foundation USA Target Advancement Program, Grant ID #10742.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

401_2018_1892_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 27 kb)
401_2018_1892_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)
401_2018_1892_MOESM3_ESM.tif (412 kb)
Supplementary material 3 (TIFF 412 kb)
401_2018_1892_MOESM4_ESM.tif (1.2 mb)
Supplementary material 4 (TIFF 1219 kb)
401_2018_1892_MOESM5_ESM.tif (3.7 mb)
Supplementary material 5 (TIFF 3762 kb)
401_2018_1892_MOESM6_ESM.tif (540 kb)
Supplementary material 6 (TIFF 539 kb)
401_2018_1892_MOESM7_ESM.tif (1.2 mb)
Supplementary material 7 (TIFF 1239 kb)


  1. 1.
    Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752. CrossRefPubMedGoogle Scholar
  2. 2.
    Anichtchik O, Calo L, Spillantini MG (2013) Synaptic dysfunction in synucleinopathies. CNS Neurol Disord Drug Targets 12:1094–1100PubMedGoogle Scholar
  3. 3.
    Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA, Frau L, Morelli M, Ingrassia R, Benarese M, Porrini V, Pellitteri M, Bertini G, Fabene PF, Sigala S, Spillantini MG, Liou HC, Spano PF, Pizzi M (2012) Late-onset Parkinsonism in NFkappaB/c-Rel-deficient mice. Brain J Neurol 135:2750–2765. CrossRefGoogle Scholar
  4. 4.
    Basso E, Antas P, Marijanovic Z, Goncalves S, Tenreiro S, Outeiro TF (2013) PLK2 modulates alpha-synuclein aggregation in yeast and mammalian cells. Mol Neurobiol 48:854–862. CrossRefPubMedGoogle Scholar
  5. 5.
    Bellucci A, Antonini A, Pizzi M, Spano P (2017) The end is the beginning: Parkinson’s disease in the light of brain imaging. Front Aging Neurosci 9:330. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bellucci A, Collo G, Sarnico I, Battistin L, Missale C, Spano P (2008) Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D2/D3 receptor activation. J Neurochem 106:560–577. CrossRefPubMedGoogle Scholar
  7. 7.
    Bellucci A, Fiorentini C, Zaltieri M, Missale C, Spano P (2014) The “in situ” proximity ligation assay to probe protein-protein interactions in intact tissues. Methods Mol Biol 1174:397–405. CrossRefPubMedGoogle Scholar
  8. 8.
    Bellucci A, Mercuri NB, Venneri A, Faustini G, Longhena F, Pizzi M, Missale C, Spano P (2016) Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 42:77–94. CrossRefPubMedGoogle Scholar
  9. 9.
    Bellucci A, Navarria L, Falarti E, Zaltieri M, Bono F, Collo G, Spillantini MG, Missale C, Spano P (2011) Redistribution of DAT/alpha-synuclein complexes visualized by “in situ” proximity ligation assay in transgenic mice modelling early Parkinson’s disease. PLoS One 6:e27959. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, Missale C, Spano P (2011) Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson’s disease. J Neurochem 116:588–605. CrossRefPubMedGoogle Scholar
  11. 11.
    Bogen IL, Boulland JL, Mariussen E, Wright MS, Fonnum F, Kao HT, Walaas SI (2006) Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters. J Neurochem 96:1458–1466. CrossRefPubMedGoogle Scholar
  12. 12.
    Boix J, Padel T, Paul G (2015) A partial lesion model of Parkinson’s disease in mice–characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 284:196–206. CrossRefPubMedGoogle Scholar
  13. 13.
    Burre J (2015) The Synaptic Function of alpha-Synuclein. J Parkinson’s Dis 5:699–713. CrossRefGoogle Scholar
  14. 14.
    Burre J, Sharma M, Sudhof TC (2014) alpha-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci USA 111:E4274–E4283. CrossRefPubMedGoogle Scholar
  15. 15.
    Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Decressac M, Mattsson B, Lundblad M, Weikop P, Bjorklund A (2012) Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons. Neurobiol Dis 45:939–953. CrossRefPubMedGoogle Scholar
  17. 17.
    Diao J, Burre J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, Sudhof TC, Brunger AT (2013) Native alpha-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2:e00592. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Engelender S, Isacson O (2017) The threshold theory for Parkinson’s disease. Trends Neurosci 40:4–14. CrossRefPubMedGoogle Scholar
  19. 19.
    Farzanehfar P, Horne MK, Aumann TD (2017) Can valproic acid regulate neurogenesis from Nestin+ cells in the adult midbrain? Neurochem Res 42:2127–2134. CrossRefPubMedGoogle Scholar
  20. 20.
    Fusco G, Pape T, Stephens AD, Mahou P, Costa AR, Kaminski CF, Kaminski Schierle GS, Vendruscolo M, Veglia G, Dobson CM, De Simone A (2016) Structural basis of synaptic vesicle assembly promoted by alpha-synuclein. Nat Commun 7:12563. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Garcia-Reitbock P, Anichtchik O, Bellucci A, Iovino M, Ballini C, Fineberg E, Ghetti B, Della Corte L, Spano P, Tofaris GK, Goedert M, Spillantini MG (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain J Neurol 133:2032–2044. CrossRefGoogle Scholar
  22. 22.
    Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24. CrossRefPubMedGoogle Scholar
  23. 23.
    Grealish S, Mattsson B, Draxler P, Bjorklund A (2010) Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci 31:2266–2278. CrossRefPubMedGoogle Scholar
  24. 24.
    Kile BM, Guillot TS, Venton BJ, Wetsel WC, Augustine GJ, Wightman RM (2010) Synapsins differentially control dopamine and serotonin release. J Neurosci 30:9762–9770. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791CrossRefPubMedGoogle Scholar
  26. 26.
    Larson ME, Greimel SJ, Amar F, LaCroix M, Boyle G, Sherman MA, Schley H, Miel C, Schneider JA, Kayed R, Benfenati F, Lee MK, Bennett DA, Lesne SE (2017) Selective lowering of synapsins induced by oligomeric alpha-synuclein exacerbates memory deficits. Proc Natl Acad Sci USA 114:E4648–E4657. CrossRefPubMedGoogle Scholar
  27. 27.
    Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926CrossRefPubMedGoogle Scholar
  28. 28.
    Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99:10813–10818. CrossRefPubMedGoogle Scholar
  29. 29.
    Lohr KM, Masoud ST, Salahpour A, Miller GW (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci 45:20–33. CrossRefPubMedGoogle Scholar
  30. 30.
    Longhena F, Faustini G, Missale C, Pizzi M, Bellucci A (2018) Dopamine transporter/alpha-synuclein complexes are altered in the post mortem caudate putamen of Parkinson’s disease: an in situ proximity ligation assay study. Int J Mol Sci. PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Longhena F, Faustini G, Varanita T, Zaltieri M, Porrini V, Tessari I, Poliani PL, Missale C, Borroni B, Padovani A, Bubacco L, Pizzi M, Spano P, Bellucci A (2018) Synapsin III is a key component of alpha-synuclein fibrils in Lewy bodies of PD brains. Brain Pathol. PubMedCrossRefGoogle Scholar
  32. 32.
    Lundblad M, Decressac M, Mattsson B, Bjorklund A (2012) Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons. Proc Natl Acad Sci USA 109:3213–3219. CrossRefPubMedGoogle Scholar
  33. 33.
    McFarland NR, Fan Z, Xu K, Schwarzschild MA, Feany MB, Hyman BT, McLean PJ (2009) Alpha-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J Neuropathol Exp Neurol 68:515–524. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Medeiros AT, Soll LG, Tessari I, Bubacco L, Morgan JR (2017) alpha-synuclein dimers impair vesicle fission during clathrin-mediated synaptic vesicle recycling. Frontiers in cellular neuroscience 11:388. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28:11221–11230. CrossRefPubMedGoogle Scholar
  36. 36.
    Oliveras-Salva M, Van der Perren A, Casadei N, Stroobants S, Nuber S, D’Hooge R, Van den Haute C, Baekelandt V (2013) rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegen 8:44. CrossRefGoogle Scholar
  37. 37.
    Paxinos G, Franklin K (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th ednGoogle Scholar
  38. 38.
    Phan JA, Stokholm K, Zareba-Paslawska J, Jakobsen S, Vang K, Gjedde A, Landau AM, Romero-Ramos M (2017) Early synaptic dysfunction induced by alpha-synuclein in a rat model of Parkinson’s disease. Sci Rep 7:6363. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572. CrossRefPubMedGoogle Scholar
  40. 40.
    Pieribone VA, Porton B, Rendon B, Feng J, Greengard P, Kao HT (2002) Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol 454:105–114. CrossRefPubMedGoogle Scholar
  41. 41.
    Plotegher N, Bubacco L (2016) Lysines, Achilles’ heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Res Rev 26:62–71. CrossRefPubMedGoogle Scholar
  42. 42.
    Porton B, Wetsel WC, Kao HT (2011) Synapsin III: role in neuronal plasticity and disease. Semin Cell Dev Biol 22:416–424. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Poudel KR, Bai J (2014) Synaptic vesicle morphology: a case of protein sorting? Curr Opin Cell Biol 26:28–33. CrossRefPubMedGoogle Scholar
  44. 44.
    Roberts RF, Wade-Martins R, Alegre-Abarrategui J (2015) Direct visualization of alpha-synuclein oligomers reveals previously undetected pathology in Parkinson’s disease brain. Brain J Neurol 138:1642–1657. CrossRefGoogle Scholar
  45. 45.
    Royce GJ, Laine EJ (1984) Efferent connections of the caudate nucleus, including cortical projections of the striatum and other basal ganglia: an autoradiographic and horseradish peroxidase investigation in the cat. J Comp Neurol 226:28–49. CrossRefPubMedGoogle Scholar
  46. 46.
    Samuel F, Flavin WP, Iqbal S, Pacelli C, Sri Renganathan SD, Trudeau LE, Campbell EM, Fraser PE, Tandon A (2016) Effects of serine 129 phosphorylation on alpha-synuclein aggregation, membrane association, and internalization. J Biol Chem 291:4374–4385. CrossRefPubMedGoogle Scholar
  47. 47.
    Sancenon V, Lee SA, Patrick C, Griffith J, Paulino A, Outeiro TF, Reggiori F, Masliah E, Muchowski PJ (2012) Suppression of alpha-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Hum Mol Genet 21:2432–2449. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Segura-Aguilar J, Paris I, Munoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915. CrossRefPubMedGoogle Scholar
  49. 49.
    Shan X, Chi L, Bishop M, Luo C, Lien L, Zhang Z, Liu R (2006) Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease-like mice. Stem cells 24:1280–1287. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. CrossRefPubMedGoogle Scholar
  51. 51.
    Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690. CrossRefPubMedGoogle Scholar
  52. 52.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101–113. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tofaris GK, Garcia Reitbock P, Humby T, Lambourne SL, O’Connell M, Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M, Spillantini MG (2006) Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci 26:3942–3950. CrossRefPubMedGoogle Scholar
  55. 55.
    Vargas KJ, Makani S, Davis T, Westphal CH, Castillo PE, Chandra SS (2014) Synucleins regulate the kinetics of synaptic vesicle endocytosis. J Neurosci 34:9364–9376. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV, Laugks U, Lucic V, Chandra SS (2017) Synucleins have multiple effects on presynaptic architecture. Cell Rep 18:161–173. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang L, Das U, Scott DA, Tang Y, McLean PJ, Roy S (2014) alpha-synuclein multimers cluster synaptic vesicles and attenuate recycling. CB 24:2319–2326. PubMedCrossRefGoogle Scholar
  58. 58.
    Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H (2004) Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91:451–461. CrossRefPubMedGoogle Scholar
  59. 59.
    Zaltieri M, Grigoletto J, Longhena F, Navarria L, Favero G, Castrezzati S, Colivicchi MA, Della Corte L, Rezzani R, Pizzi M, Benfenati F, Spillantini MG, Missale C, Spano P, Bellucci A (2015) alpha-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J Cell Sci 128:2231–2243. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gaia Faustini
    • 1
  • Francesca Longhena
    • 1
  • Tatiana Varanita
    • 2
  • Luigi Bubacco
    • 2
  • Marina Pizzi
    • 1
  • Cristina Missale
    • 1
  • Fabio Benfenati
    • 3
    • 4
  • Anders Björklund
    • 5
  • PierFranco Spano
    • 1
  • Arianna Bellucci
    • 1
    • 6
    Email author
  1. 1.Division of Pharmacology, Department of molecular and Translational MedicineUniversity of BresciaBresciaItaly
  2. 2.Department of BiologyUniversity of PadovaPaduaItaly
  3. 3.Center for Synaptic Neuroscience and TechnologyItalian Institute of TechnologyGenoaItaly
  4. 4.IRCCS Ospedale Policlinico San MartinoGenoaItaly
  5. 5.Neurobiology Unit, BMC A11, Department of Experimental Medical ScienceLund UniversityLundSweden
  6. 6.Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly

Personalised recommendations