Advertisement

Acta Neuropathologica

, Volume 135, Issue 6, pp 965–967 | Cite as

Infectious prions do not induce Aβ deposition in an in vivo seeding model

  • Jay Rasmussen
  • Susanne Krasemann
  • Hermann Altmeppen
  • Petra Schwarz
  • Juliane Schelle
  • Adriano Aguzzi
  • Markus Glatzel
  • Mathias Jucker
Correspondence

An increasing number of studies have suggested that certain cases of iatrogenic Creutzfeldt–Jakob disease (iCJD) that harbor significant β-amyloid (Aβ) pathology are the result of aggregated Aβ transmission to patients during the same procedure that caused prion disease [2, 4, 7, 8, 11, 13, 17]. The source of iatrogenic contamination has been observed both for human growth hormone infusions and dura mater grafts, arguing against a treatment specific effect. Intriguingly, recent work has also observed suspected Aβ pathology transmission in post-mortem samples that received growth hormone treatments but did not develop CJD [17]. Yet another study suggested that neurosurgery with Aβ-contaminated tools can transmit Aβ pathology and lead to intracerebral hemorrhage [12]. These findings have been debated in the context of whether Aβ pathology is truly transmissible and whether Alzheimer’s disease could subsequently develop.

It is well known that aggregated Aβ can nucleate the misfolding and...

Notes

Acknowledgements

This study was partly supported by the EC Joint Programme on Neurodegenerative Diseases (REfrAME and NeuTarget), CJD Foundation Inc. and German Ministry of Education and Research Programme (UndoAD). We also thank K. Hartmann and U. Obermüller for technical assistance.

Supplementary material

401_2018_1848_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582.  https://doi.org/10.1038/356577a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Cali I, Cohen ML, Hasmall Yi US, Parchi P, Giaccone G, Collins SJ, Kofskey D, Wang H, McLean CA, Brandel JP et al (2018) Iatrogenic Creutzfeldt-Jakob disease with Amyloid-beta pathology: an international study. Acta Neuropathol Commun 6:5.  https://doi.org/10.1186/s40478-017-0503-z CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dohler F, Sepulveda-Falla D, Krasemann S, Altmeppen H, Schluter H, Hildebrand D, Zerr I, Matschke J, Glatzel M (2014) High molecular mass assemblies of amyloid-beta oligomers bind prion protein in patients with Alzheimer’s disease. Brain 137:873–886.  https://doi.org/10.1093/brain/awt375 CrossRefPubMedGoogle Scholar
  4. 4.
    Duyckaerts C, Sazdovitch V, Ando K, Seilhean D, Privat N, Yilmaz Z, Peckeu L, Amar E, Comoy E, Maceski A et al (2018) Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol 135:201–212.  https://doi.org/10.1007/s00401-017-1791-x CrossRefPubMedGoogle Scholar
  5. 5.
    Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982.  https://doi.org/10.1126/science.1194516 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15:1255–1264PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Frontzek K, Lutz MI, Aguzzi A, Kovacs GG, Budka H (2016) Amyloid-beta pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med Wkly 146:w14287.  https://doi.org/10.4414/smw.2016.14287 PubMedCrossRefGoogle Scholar
  8. 8.
    Hamaguchi T, Taniguchi Y, Sakai K, Kitamoto T, Takao M, Murayama S, Iwasaki Y, Yoshida M, Shimizu H, Kakita A et al (2016) Significant association of cadaveric dura mater grafting with subpial Abeta deposition and meningeal amyloid angiopathy. Acta Neuropathol 132:313–315.  https://doi.org/10.1007/s00401-016-1588-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H (1998) Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol 96:116–122CrossRefPubMedGoogle Scholar
  10. 10.
    Herve D, Porche M, Cabrejo L, Guidoux C, Tournier-Lasserve E, Nicolas G, Adle-Biassette H, Plu I, Chabriat H, Duyckaerts C (2018) Fatal Abeta cerebral amyloid angiopathy 4 decades after a dural graft at the age of 2 years. Acta Neuropathol.  https://doi.org/10.1007/s00401-018-1828-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS et al (2015) Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 525:247–250.  https://doi.org/10.1038/nature15369 CrossRefPubMedGoogle Scholar
  12. 12.
    Jaunmuktane Z, Quaegebeur A, Taipa R, Viana-Baptista M, Barbosa R, Koriath C, Sciot R, Mead S, Brandner S (2018) Evidence of amyloid-beta cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol.  https://doi.org/10.1007/s00401-018-1822-2 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kovacs GG, Lutz MI, Ricken G, Strobel T, Hoftberger R, Preusser M, Regelsberger G, Honigschnabl S, Reiner A, Fischer P et al (2016) Dura mater is a potential source of Abeta seeds. Acta Neuropathol 131:911–923.  https://doi.org/10.1007/s00401-016-1565-x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132.  https://doi.org/10.1038/nature07761 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784.  https://doi.org/10.1126/science.1131864 CrossRefPubMedGoogle Scholar
  16. 16.
    Morales R, Estrada LD, Diaz-Espinoza R, Morales-Scheihing D, Jara MC, Castilla J, Soto C (2010) Molecular cross talk between misfolded proteins in animal models of Alzheimer’s and prion diseases. J Neurosci 30:4528–4535.  https://doi.org/10.1523/JNEUROSCI.5924-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W et al (2017) Amyloid-beta accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 134:221–240.  https://doi.org/10.1007/s00401-017-1703-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sarell CJ, Quarterman E, Yip DC, Terry C, Nicoll AJ, Wadsworth JDF, Farrow MA, Walsh DM, Collinge J (2017) Soluble Abeta aggregates can inhibit prion propagation. Open Biol.  https://doi.org/10.1098/rsob.170158 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schwarze-Eickner K, Keyvani K, Görtz N, Westaway D, Sachser D, Paulus W (2005) Prion protein (PrPc) promotes beta-amyloid plaque formation. Neurobiol Aging 26:1177–1182CrossRefGoogle Scholar
  20. 20.
    Ye L, Rasmussen J, Kaeser SA, Marzesco AM, Obermuller U, Mahler J, Schelle J, Odenthal J, Kruger C, Fritschi SK et al (2017) Abeta seeding potency peaks in the early stages of cerebral beta-amyloidosis. EMBO Rep 18:1536–1544.  https://doi.org/10.15252/embr.201744067 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.German Center for Neurodegenerative Diseases (DZNE), TübingenTübingenGermany
  2. 2.Department of Cellular Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  3. 3.Graduate Training Center of Neuroscience-Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
  4. 4.Institute of NeuropathologyUniversity Medical Center Hamburg-Eppendorf UKEHamburgGermany
  5. 5.Institute of NeuropathologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations