Advertisement

Acta Neuropathologica

, Volume 135, Issue 4, pp 569–579 | Cite as

Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration

  • Mathilde Small
  • Isabelle Treilleux
  • Coline Couillault
  • Daniel Pissaloux
  • Géraldine Picard
  • Sandrine Paindavoine
  • Valery Attignon
  • Qing Wang
  • Véronique Rogemond
  • Stéphanie Lay
  • Isabelle Ray-Coquard
  • Jacobus Pfisterer
  • Florence Joly
  • Andreas Du Bois
  • Dimitri Psimaras
  • Nathalie Bendriss-Vermare
  • Christophe Caux
  • Bertrand Dubois
  • Jérôme Honnorat
  • Virginie Desestret
Original Paper

Abstract

Paraneoplastic cerebellar degenerations with anti-Yo antibodies (Yo-PCD) are rare syndromes caused by an auto-immune response against neuronal antigens (Ags) expressed by tumor cells. However, the mechanisms responsible for such immune tolerance breakdown are unknown. We characterized 26 ovarian carcinomas associated with Yo-PCD for their tumor immune contexture and genetic status of the 2 onconeural Yo-Ags, CDR2 and CDR2L. Yo-PCD tumors differed from the 116 control tumors by more abundant T and B cells infiltration occasionally organized in tertiary lymphoid structures harboring CDR2L protein deposits. Immune cells are mainly in the vicinity of apoptotic tumor cells, revealing tumor immune attack. Moreover, contrary to un-selected ovarian carcinomas, 65% of our Yo-PCD tumors presented at least one somatic mutation in Yo-Ags, with a predominance of missense mutations. Recurrent gains of the CDR2L gene with tumor protein overexpression were also present in 59% of Yo-PCD patients. Overall, each Yo-PCD ovarian carcinomas carried at least one genetic alteration of Yo-Ags. These data demonstrate an association between massive infiltration of Yo-PCD tumors by activated immune effector cells and recurrent gains and/or mutations in autoantigen-encoding genes, suggesting that genetic alterations in tumor cells trigger immune tolerance breakdown and initiation of the auto-immune disease.

Keywords

Paraneoplastic cerebellar degeneration Ovarian cancer Autoantigen-encoding gene mutations Anti-tumor immunity 

Notes

Acknowledgements

This work was supported by the LYric Grant INCa-DGOS-4664, by the Ligue Contre le Cancer Comité du Rhône and Comité de Savoie, and by a grant from Fondation ARC pour la recherche sur le cancer. The funding sources had no role in the study design, in the collection, analysis, and interpretation of data and in the writing of the manuscript. We thank NeuroBioTec Hospices Civils de Lyon BRC (France, AC-2013-1867, NFS96-900) for banking blood DNA samples. We thank Boehringer Ingelheim and the investigators of the AGO/GINECO group for providing control ovarian cancer specimens from the AGO-OVAR12 ancillary study. We thank M. Aguera for collecting samples and the PHENOCAN platform (ANR-11-EQPX-0035 PHENOCAN) for access to the Zeiss Axio San.Z1 slide scanner. We also thank D. Meyronet from the Pathology Department of Hospices Civils de Lyon for his expertise and for providing cerebellum samples, and M.-E. Mayeur, L. Odeyer, A. Colombe, A.-L. Pinto and J. Berthet for expert technical assistance in IHC/IF staining. We thank Doctor N. Chopin (Centre Leon Berard, Lyon) for his collaboration. We gratefully acknowledge Philip Robinson for English language editing (Direction de la Recherche Clinique, Hospices civils de Lyon).

Compliance with ethical standards

Ethical approval

Patients had died or given their written consent for the use of their tumor and blood samples for research purposes. For genetic analysis, DNA from blood lymphocytes was obtained from NeuroBioTec Hospices Civils de Lyon BRC (France, AC-2013-1867, NFS96-900) with an approval from an independent review board (Comité de Protection des Personnes Sud-Est IV).

Conflict of interest

The authors have declared that no conflict of interest exists.

Supplementary material

401_2017_1802_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1242 kb)

References

  1. 1.
    Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB (1998) Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 4:1321–1324.  https://doi.org/10.1038/3315 CrossRefPubMedGoogle Scholar
  2. 2.
    Albert ML, Darnell RB (2004) Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 4:36–44.  https://doi.org/10.1038/nrc1255 CrossRefPubMedGoogle Scholar
  3. 3.
    Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carpenter EL, Vance BA, Klein RS, Voloschin A, Dalmau J, Vonderheide RH (2008) Functional analysis of CD8+ T cell responses to the onconeural self protein cdr2 in patients with paraneoplastic cerebellar degeneration. J Neuroimmunol 193:173–182.  https://doi.org/10.1016/j.jneuroim.2007.10.014 CrossRefPubMedGoogle Scholar
  5. 5.
    Corradi JP, Yang C, Darnell JC, Dalmau J, Darnell RB (1997) A post-transcriptional regulatory mechanism restricts expression of the paraneoplastic cerebellar degeneration antigen cdr2 to immune privileged tissues. J Neurosci 17:1406–1415PubMedGoogle Scholar
  6. 6.
    Darnell JC, Albert ML, Darnell RB (2000) Cdr2, a target antigen of naturally occuring human tumor immunity, is widely expressed in gynecological tumors. Can Res 60:2136–2139Google Scholar
  7. 7.
    Darnell RB, Posner JB (2003) Paraneoplastic syndromes involving the nervous system. N Engl J Med 349:1543–1554.  https://doi.org/10.1056/NEJMra023009 CrossRefPubMedGoogle Scholar
  8. 8.
    Dieu-Nosjean M-C, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L, Lebecque S, Fridman W-H, Cadranel J (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417.  https://doi.org/10.1200/JCO.2007.15.0284 CrossRefPubMedGoogle Scholar
  9. 9.
    Eichler TW, Totland C, Haugen M, Qvale TH, Mazengia K, Storstein A, Haukanes BI, Vedeler CA (2013) CDR2L antibodies: a new player in paraneoplastic cerebellar degeneration. PLoS One 8:e66002.  https://doi.org/10.1371/journal.pone.0066002 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Engelhorn ME, Guevara-Patiño JA, Noffz G, Hooper AT, Lou O, Gold JS, Kappel BJ, Houghton AN (2006) Autoimmunity and tumor immunity induced by immune responses to mutations in self. Nat Med 12:198–206.  https://doi.org/10.1038/nm1363 CrossRefPubMedGoogle Scholar
  11. 11.
    Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900CrossRefPubMedGoogle Scholar
  12. 12.
    Furneaux HF, Reich L, Posner JB (1990) Autoantibody synthesis in the central nervous system of patients with paraneoplastic syndromes. Neurology 40:1085–1091CrossRefPubMedGoogle Scholar
  13. 13.
    Graus F, Dalmou J, René R, Tora M, Malats N, Verschuuren JJ, Cardenal F, Viñolas N, Garcia del Muro J, Vadell C, Mason WP, Rosell R, Posner JB, Real FX (1997) Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival. J Clin Oncol 15:2866–2872.  https://doi.org/10.1200/JCO.1997.15.8.2866 CrossRefPubMedGoogle Scholar
  14. 14.
    Graus F, Delattre JY, Antoine JC, Dalmau J, Giometto B, Grisold W, Honnorat J, Smitt PS, Vedeler C, Verschuuren JJGM, Vincent A, Voltz R (2004) Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 75:1135–1140.  https://doi.org/10.1136/jnnp.2003.034447 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hoxha E, Wiech T, Stahl PR, Zahner G, Tomas NM, Meyer-Schwesinger C, Wenzel U, Janneck M, Steinmetz OM, Panzer U, Harendza S, Stahl RAK (2016) A mechanism for cancer-associated membranous nephropathy. N Engl J Med 374:1995–1996.  https://doi.org/10.1056/NEJMc1511702 CrossRefPubMedGoogle Scholar
  16. 16.
    Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, Boin F, Fava A, Thoburn C, Kinde I, Jiao Y, Papadopoulos N, Kinzler KW, Vogelstein B, Rosen A (2014) Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–157.  https://doi.org/10.1126/science.1246886 CrossRefPubMedGoogle Scholar
  17. 17.
    Kim WK, Park M, Park M, Kim YJ, Shin N, Kim HK, You KT, Kim H (2013) Identification and selective degradation of neopeptide-containing truncated mutant proteins in the tumors with high microsatellite instability. Clin Cancer Res 19:3369–3382.  https://doi.org/10.1158/1078-0432.CCR-13-0684 CrossRefPubMedGoogle Scholar
  18. 18.
    Kottke T, Shim KG, Alonso-Camino V, Zaidi S, Maria Diaz R, Pulido J, Thompson J, Rajani KR, Evgin L, Ilett E, Pandha H, Harrington K, Selby P, Melcher A, Vile R (2016) Immunogenicity of self tumor associated proteins is enhanced through protein truncation. Mol Ther Oncolytics 3:16030.  https://doi.org/10.1038/mto.2016.30 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kroeger DR, Milne K, Nelson BH (2016) Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res 22:3005–3015.  https://doi.org/10.1158/1078-0432.CCR-15-2762 CrossRefPubMedGoogle Scholar
  20. 20.
    Kurman RJ, Carcangiu ML, Herrington CS, Young RH (2014) WHO classification of tumours of female reproductive organs, 4th edn. World Health Organization, GenevaGoogle Scholar
  21. 21.
    Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, Welters MJP, van der Burg S, Kapiteijn E, Michielin O, Romano E, Linnemann C, Speiser D, Blank C, Haanen JB, Schumacher TN (2014) Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 6:254ra128–254ra128.  https://doi.org/10.1126/scitranslmed.3008918 CrossRefPubMedGoogle Scholar
  22. 22.
    Leary JA, Kerr J, Chenevix-Trench G, Doris CP, Hurst T, Houghton CR, Friedlander ML (1995) Increased expression of the NME1 gene is associated with metastasis in epithelial ovarian cancer. Int J Cancer 64:189–195CrossRefPubMedGoogle Scholar
  23. 23.
    Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C, ESMO Guidelines Working Group (2013) Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi24–vi32.  https://doi.org/10.1093/annonc/mdt333 CrossRefPubMedGoogle Scholar
  24. 24.
    Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard J-P (2013) High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J Immunol 191:2001–2008.  https://doi.org/10.4049/jimmunol.1300872 CrossRefPubMedGoogle Scholar
  25. 25.
    Movassagh M, Spatz A, Davoust J, Lebecque S, Romero P, Pittet M, Rimoldi D, Liénard D, Gugerli O, Ferradini L, Robert C, Avril M-F, Zitvogel L, Angevin E (2004) Selective accumulation of mature DC-Lamp + dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Can Res 64:2192–2198CrossRefGoogle Scholar
  26. 26.
    Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, Nelson BH (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18:3281–3292.  https://doi.org/10.1158/1078-0432.CCR-12-0234 CrossRefPubMedGoogle Scholar
  27. 27.
    Pastor F, Kolonias D, Giangrande PH, Gilboa E (2010) Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 465:227–230.  https://doi.org/10.1038/nature08999 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Peterson K, Rosenblum MK, Kotanides H, Posner JB (1992) Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 42:1931–1937CrossRefPubMedGoogle Scholar
  29. 29.
    Raspaglio G, Petrillo M, Martinelli E, Li Puma DD, Mariani M, De Donato M, Filippetti F, Mozzetti S, Prislei S, Zannoni GF, Scambia G, Ferlini C (2014) Sox9 and Hif-2α regulate TUBB3 gene expression and affect ovarian cancer aggressiveness. Gene 542:173–181.  https://doi.org/10.1016/j.gene.2014.03.037 CrossRefPubMedGoogle Scholar
  30. 30.
    Rojas-Marcos I, Picard G, Chinchón D, Gelpi E, Psimaras D, Giometto B, Delattre JY, Honnorat J, Graus F (2012) Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo-associated paraneoplastic cerebellar degeneration. Neuro-oncology 14:506–510.  https://doi.org/10.1093/neuonc/nos006 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, Rodrigues DN, Renwick A, Seal S, Ramsay E, Duarte SDV, Rivas MA, Warren-Perry M, Zachariou A, Campion-Flora A, Hanks S, Murray A, Ansari Pour N, Douglas J, Gregory L, Rimmer A, Walker NM, Yang T-P, Adlard JW, Barwell J, Berg J, Brady AF, Brewer C, Brice G, Chapman C, Cook J, Davidson R, Donaldson A, Douglas F, Eccles D, Evans DG, Greenhalgh L, Henderson A, Izatt L, Kumar A, Lalloo F, Miedzybrodzka Z, Morrison PJ, Paterson J, Porteous M, Rogers MT, Shanley S, Walker L, Gore M, Houlston R, Brown MA, Caufield MJ, Deloukas P, McCarthy MI, Todd JA, Breast and Ovarian Cancer Susceptibility Collaboration, Wellcome Trust Case Control Consortium, Turnbull C, Reis-Filho JS, Ashworth A, Antoniou AC, Lord CJ, Donnelly P, Rahman N (2013) Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493:406–410.  https://doi.org/10.1038/nature11725 CrossRefPubMedGoogle Scholar
  32. 32.
    Santomasso BD, Roberts WK, Thomas A, Williams T, Blachère NE, Dudley ME, Houghton AN, Posner JB, Darnell RB (2007) A T-cell receptor associated with naturally occurring human tumor immunity. Proc Natl Acad Sci USA 104:19073–19078CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen Y-T, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8 +/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543.  https://doi.org/10.1073/pnas.0509182102 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schubert M, Panja D, Haugen M, Bramham CR, Vedeler CA (2014) Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol 128:835–852.  https://doi.org/10.1007/s00401-014-1351-6 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Storstein A, Krossnes BK, Vedeler CA (2009) Morphological and immunohistochemical characterization of paraneoplastic cerebellar degeneration associated with Yo antibodies. Acta Neurol Scand 120:64–67.  https://doi.org/10.1111/j.1600-0404.2008.01138.x CrossRefPubMedGoogle Scholar
  36. 36.
    Stumpf M, Hasenburg A, Riener M-O, Jütting U, Wang C, Shen Y, Orlowska-Volk M, Fisch P, Wang Z, Gitsch G, Werner M, Lassmann S (2009) Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 101:1513–1521.  https://doi.org/10.1038/sj.bjc.6605274 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sutton IJ, Steele J, Savage CO, Winer JB, Young LS (2004) An interferon-gamma ELISPOT and immunohistochemical investigation of cytotoxic T lymphocyte-mediated tumour immunity in patients with paraneoplastic cerebellar degeneration and anti-Yo antibodies. J Neuroimmunol 150:98–106.  https://doi.org/10.1016/j.jneuroim.2003.12.026 CrossRefPubMedGoogle Scholar
  38. 38.
    Tanaka K, Tanaka M, Onodera O, Tsuji S (1995) Paraneoplastic cerebellar degeneration—characterization of anti-Yo antibody and underlying cancer. Rinsho Shinkeigaku 35:770–774PubMedGoogle Scholar
  39. 39.
    Tanaka M, Tanaka K, Onodera O, Tsuji S (1995) Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. 1. Mouse strains bearing different MHC molecules produce antibodies on immunization with recombinant Yo protein, but do not cause Purkinje cell loss. Clin Neurol Neurosurg 97:95–100CrossRefPubMedGoogle Scholar
  40. 40.
    Totland C, Aarskog NK, Eichler TW, Haugen M, Nøstbakken JK, Monstad SE, Salvesen HB, Mørk S, Haukanes BI, Vedeler CA (2011) CDR2 antigen and Yo antibodies. Cancer Immunol Immunother 60:283–289.  https://doi.org/10.1007/s00262-010-0943-9 CrossRefPubMedGoogle Scholar
  41. 41.
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Geukes Foppen MH, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211.  https://doi.org/10.1126/science.aad0095 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Verschuuren J, Chuang L, Rosenblum MK, Lieberman F, Pryor A, Posner JB, Dalmau J (1996) Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol 91:519–525CrossRefPubMedGoogle Scholar
  43. 43.
    Zaborowski MP, Spaczynski M, Nowak-Markwitz E, Michalak S (2015) Paraneoplastic neurological syndromes associated with ovarian tumors. J Cancer Res Clin Oncol 141:99–108.  https://doi.org/10.1007/s00432-014-1745-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213.  https://doi.org/10.1056/NEJMoa020177 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mathilde Small
    • 1
    • 2
    • 3
  • Isabelle Treilleux
    • 4
  • Coline Couillault
    • 3
    • 5
  • Daniel Pissaloux
    • 4
    • 6
  • Géraldine Picard
    • 2
  • Sandrine Paindavoine
    • 4
    • 6
  • Valery Attignon
    • 6
  • Qing Wang
    • 6
  • Véronique Rogemond
    • 1
    • 2
  • Stéphanie Lay
    • 2
  • Isabelle Ray-Coquard
    • 7
  • Jacobus Pfisterer
    • 8
  • Florence Joly
    • 9
  • Andreas Du Bois
    • 10
  • Dimitri Psimaras
    • 2
  • Nathalie Bendriss-Vermare
    • 3
    • 5
  • Christophe Caux
    • 3
    • 5
  • Bertrand Dubois
    • 3
    • 5
  • Jérôme Honnorat
    • 1
    • 2
    • 3
  • Virginie Desestret
    • 1
    • 2
    • 3
  1. 1.Institut NeuroMyogène, Equipe Synaptopathies et Autoanticorps (SynatAc), INSERM U1217/UMR CRS 5310LyonFrance
  2. 2.French Reference Center on Paraneoplastic Neurological SyndromeHospices civils de LyonLyonFrance
  3. 3.University of Lyon, Université Claude Bernard Lyon 1LyonFrance
  4. 4.Department of BiopathologyCentre Leon BerardLyonFrance
  5. 5.INSERM 1052, CNRS 5286, Centre Leon Berard, Centre de Recherche en Cancérologie de LyonLyonFrance
  6. 6.Cancer Genomics Platform, Department of Translational ResearchCentre Leon BerardLyonFrance
  7. 7.Department of Oncology, Groupe GINECOCentre Leon BerardLyonFrance
  8. 8.Gynecologic Oncology CenterKielGermany
  9. 9.Centre Francois Baclesse, Groupe GINECOCaenFrance
  10. 10.Kliniken Essen MitteEssenGermany

Personalised recommendations