Acta Neuropathologica

, Volume 135, Issue 4, pp 551–568 | Cite as

Distinguishing features of microglia- and monocyte-derived macrophages after stroke

  • Golo Kronenberg
  • Ria Uhlemann
  • Nadine Richter
  • Friederike Klempin
  • Stephanie Wegner
  • Lilian Staerck
  • Susanne Wolf
  • Wolfgang Uckert
  • Helmut Kettenmann
  • Matthias Endres
  • Karen GertzEmail author
Original Paper


After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K+ currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of ‘intermediate states’ in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg−/− mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.


Cerebral ischemia Bone-marrow chimera Microglia Macrophage Middle cerebral artery occlusion 



The technical assistance of Bettina Herrmann, Melanie Kroh, and Stefanie Balz is gratefully acknowledged. We also thank the Charité Core Facility ‘7T Experimental MRIs’ and the Deutsches Rheuma-Forschungszentrum Berlin ‘Flow Cytometry Core Facility’ (FCCF) for excellent support.


This work was supported by the Deutsche Forschungsgemeinschaft (SFB TRR43 to M.E. and G.K.; GE2576/3-1 to K.G; DFG KR2956/5-1 to G.K; Exc257 to M.E.), the Bundesministerium für Bildung und Forschung (Center for Stroke Research Berlin to G.K., K.G., and M.E.), the European Union’s Seventh Framework Program (FP7/HEALTH.2013.2.4.2-1) under Grant agreement no. 602354 (Counterstroke consortium to K.G. and M.E.), the German Center for Neurodegenerative Diseases (DZNE; to M.E.), the German Center for Cardiovascular Research (DZHK; to M.E.), and the Corona Foundation (to M.E.).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

401_2017_1795_MOESM1_ESM.xlsx (107 kb)
Genes upregulated in blood-derived macrophages as compared to resident microglia (DsRed>EGFP) (XLSX 106 kb)
401_2017_1795_MOESM2_ESM.xlsx (185 kb)
Genes upregulated in resident microglia as compared to blood-derived macrophages (EGFP>DsRed) (XLSX 185 kb)
401_2017_1795_MOESM3_ESM.xls (1.2 mb)
Annotation enrichment analysis for the dataset DsRed>EGFP (XLS 1224 kb)
401_2017_1795_MOESM4_ESM.xls (1002 kb)
Annotation enrichment analysis for the dataset EGFP>DsRed (XLS 1001 kb)
401_2017_1795_MOESM5_ESM.xlsx (39 kb)
Genes selectively upregulated in blood-derived macrophages (XLSX 38 kb)
401_2017_1795_MOESM6_ESM.xlsx (65 kb)
Genes selectively upregulated in microglia (XLSX 64 kb)
401_2017_1795_MOESM7_ESM.xlsx (591 kb)
Comparison of previously described microglia-specific genes [7] with our dataset EGFP>DsRed. The first sheet of the Exel file represents a comparison of our candidate genes with the dataset published by Butovsky and co-workers [7]. Note that 56 transcripts occur in both datasets. The second sheet of the Exel file contains the transcripts specifically expressed in microglia (EGFP>DsRed) but not described by Butovsky and co-workers. Finally, the third sheet is identical to the second sheet except for the fact that all transcripts of unknown function were removed (XLSX 590 kb)
401_2017_1795_MOESM8_ESM.xlsx (12 kb)
Comparison of previously described microglia-enriched transcripts in EAE [7] to our dataset EGFP>DsRed (XLSX 12 kb)
401_2017_1795_MOESM9_ESM.pdf (402 kb)
Flow cytometry of blood from WTDsRed → MacGreen BM chimeras. a Gating strategy. b Percentages (frequency of parent) of DsRed+ cells in granulocytes, monocytes, and lymphocytes. On average, 20.9% of blood monocytes express the fluorophore DsRed. N=31 mice. c Gating strategy for post-stroke analysis of white blood cells.Flow cytometry of CD11b pre-enriched brain cells post stroke. d Gating strategy. Infiltrating DsRed+ cells did not express CD3, Cd335 and Ly6G. N=7 WTDsRed → MacGreen BM chimeras (PDF 402 kb)
401_2017_1795_MOESM10_ESM.pdf (139 kb)
Transcriptomic analysis of CD11b+ DsRed+ CD45hi cells harvested from the ischemic brain of Selplg-KODsRed → WT chimeras and Selplg-WTDsRed → WT chimeras at 7 days after MCAo/reperfusion. The detailed protocol is accessible at GEO, GSE105011. a FACS gating strategy. b Hierarchical clustering did not reveal a distinction in the transcriptional response of cells derived from Selplg-WT and Selplg-KO BM. c Interexperiment correlation analysis. d Comparison of key M1 and M2 transcripts (PDF 139 kb)


  1. 1.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. CrossRefPubMedGoogle Scholar
  2. 2.
    Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152CrossRefPubMedGoogle Scholar
  3. 3.
    An G, Wang H, Tang R, Yago T, McDaniel JM, McGee S, Huo Y, Xia L (2008) P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117:3227–3237. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baker SJ, Ma’ayan A, Lieu YK, John P, Reddy MV, Chen EY, Duan Q, Snoeck HW, Reddy EP (2014) B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor cell development. Proc Natl Acad Sci USA 111:3122–3127. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bose S, Cho J (2013) Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharmacal Res 36:1039–1050. CrossRefGoogle Scholar
  6. 6.
    Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12:2049–2058CrossRefPubMedGoogle Scholar
  7. 7.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. CrossRefPubMedGoogle Scholar
  8. 8.
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. CrossRefPubMedGoogle Scholar
  9. 9.
    Chu HX, Broughton BR, Kim HA, Lee S, Drummond GR, Sobey CG (2015) Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke 46:1929–1937. CrossRefPubMedGoogle Scholar
  10. 10.
    Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, Nau R, Prinz M (2006) Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 129:2394–2403. CrossRefPubMedGoogle Scholar
  11. 11.
    Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Endres M, Meisel A, Biniszkiewicz D, Namura S, Prass K, Ruscher K, Lipski A, Jaenisch R, Moskowitz MA, Dirnagl U (2000) DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20:3175–3181PubMedGoogle Scholar
  13. 13.
    Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, Prinz V, Dirnagl U, Endres M, Prinz M et al (2013) The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol 125:395–412. CrossRefPubMedGoogle Scholar
  14. 14.
    Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Moller T et al (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171. CrossRefPubMedGoogle Scholar
  15. 15.
    Gertz K, Kronenberg G, Kalin RE, Baldinger T, Werner C, Balkaya M, Eom GD, Hellmann-Regen J, Krober J, Miller KR et al (2012) Essential role of interleukin-6 in post-stroke angiogenesis. Brain 135:1964–1980. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gertz K, Priller J, Kronenberg G, Fink KB, Winter B, Schrock H, Ji S, Milosevic M, Harms C, Bohm M et al (2006) Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res 99:1132–1140. CrossRefPubMedGoogle Scholar
  17. 17.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S (2015) Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63:2198–2207. CrossRefPubMedGoogle Scholar
  19. 19.
    Gliem M, Mausberg AK, Lee JI, Simiantonakis I, van Rooijen N, Hartung HP, Jander S (2012) Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol 71:743–752. CrossRefPubMedGoogle Scholar
  20. 20.
    Gliem M, Schwaninger M, Jander S (2016) Protective features of peripheral monocytes/macrophages in stroke. Biochem Biophys Acta 1862:329–338. PubMedGoogle Scholar
  21. 21.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. CrossRefPubMedGoogle Scholar
  22. 22.
    Gomez Perdiguero E, Schulz C, Geissmann F (2013) Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61:112–120. CrossRefPubMedGoogle Scholar
  23. 23.
    Graeber MB, Streit WJ, Kreutzberg GW (1989) Formation of microglia-derived brain macrophages is blocked by adriamycin. Acta Neuropathol 78:348–358CrossRefPubMedGoogle Scholar
  24. 24.
    Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S et al (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261CrossRefPubMedGoogle Scholar
  26. 26.
    Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, Kasner SE, McCullough LD, Sansing LH (2014) CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 34:3901–3909. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ji S, Kronenberg G, Balkaya M, Farber K, Gertz K, Kettenmann H, Endres M (2009) Acute neuroprotection by pioglitazone after mild brain ischemia without effect on long-term outcome. Exp Neurol 216:321–328. CrossRefPubMedGoogle Scholar
  29. 29.
    Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, Priller J, von Harsdorf R, Bruck W, Hortnagl H et al (2001) Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 21:5045–5053PubMedGoogle Scholar
  30. 30.
    Kawa K (1989) Electrophysiological properties of three types of granulocytes in circulating blood of the newt. J Physiol 415:211–231CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg G (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26:278–287. CrossRefPubMedGoogle Scholar
  32. 32.
    Kettenmann H, Ilschner S (1993) Physiological properties of microglia. Clin Neuropathol 12:306–307PubMedGoogle Scholar
  33. 33.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kronenberg G, Wang LP, Synowitz M, Gertz K, Katchanov J, Glass R, Harms C, Kempermann G, Kettenmann H, Endres M (2005) Nestin-expressing cells divide and adopt a complex electrophysiologic phenotype after transient brain ischemia. J Cereb Blood Flow Metab 25:1613–1624. CrossRefPubMedGoogle Scholar
  35. 35.
    Leon B, Ardavin C (2008) Monocyte migration to inflamed skin and lymph nodes is differentially controlled by L-selectin and PSGL-1. Blood 111:3126–3130. CrossRefPubMedGoogle Scholar
  36. 36.
    Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136:3578–3588. CrossRefPubMedGoogle Scholar
  37. 37.
    Lyons SA, Pastor A, Ohlemeyer C, Kann O, Wiegand F, Prass K, Knapp F, Kettenmann H, Dirnagl U (2000) Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 20:1537–1549. CrossRefPubMedGoogle Scholar
  38. 38.
    McEver RP, Cummings RD (1997) Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Investig 100:485–491. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mildner A, Mack M, Schmidt H, Bruck W, Djukic M, Zabel MD, Hille A, Priller J, Prinz M (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500. CrossRefPubMedGoogle Scholar
  40. 40.
    Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553. CrossRefPubMedGoogle Scholar
  41. 41.
    Miro-Mur F, Perez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A, Planas AM (2016) Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 53:18–33. CrossRefPubMedGoogle Scholar
  42. 42.
    Mizutani M, Pino PA, Saederup N, Charo IF, Ransohoff RM, Cardona AE (2012) The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36. CrossRefPubMedGoogle Scholar
  43. 43.
    Nakashima S (2002) Protein kinase C alpha (PKC alpha): regulation and biological function. J Biochem 132:669–675CrossRefPubMedGoogle Scholar
  44. 44.
    Neuwelt EA, Garcia JH, Mena H (1978) Diffuse microglial proliferation after global ischemia in a patient with aplastic bone marrow. Acta Neuropathol 43:259–262PubMedGoogle Scholar
  45. 45.
    Newell EW, Schlichter LC (2005) Integration of K+ and Cl− currents regulate steady-state and dynamic membrane potentials in cultured rat microglia. J Physiol 567:869–890. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Norenberg W, Gebicke-Haerter PJ, Illes P (1994) Voltage-dependent potassium channels in activated rat microglia. J Physiol 475:15–32CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Norenberg W, Langosch JM, Gebicke-Haerter PJ, Illes P (1994) Characterization and possible function of adenosine 5′-triphosphate receptors in activated rat microglia. Br J Pharmacol 111:942–950CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pannasch U, Farber K, Nolte C, Blonski M, Yan Chiu S, Messing A, Kettenmann H (2006) The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Mol Cell Neurosci 33:401–411. CrossRefPubMedGoogle Scholar
  49. 49.
    Panos M, Christophi GP, Rodriguez M, Scarisbrick IA (2014) Differential expression of multiple kallikreins in a viral model of multiple sclerosis points to unique roles in the innate and adaptive immune response. Biol Chem 395:1063–1073. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. CrossRefPubMedGoogle Scholar
  51. 51.
    Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927. CrossRefPubMedGoogle Scholar
  52. 52.
    Perry VH, Andersson PB, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273CrossRefPubMedGoogle Scholar
  53. 53.
    Phillips JW, Barringhaus KG, Sanders JM, Hesselbacher SE, Czarnik AC, Manka D, Vestweber D, Ley K, Sarembock IJ (2003) Single injection of P-selectin or P-selectin glycoprotein ligand-1 monoclonal antibody blocks neointima formation after arterial injury in apolipoprotein E-deficient mice. Circulation 107:2244–2249. CrossRefPubMedGoogle Scholar
  54. 54.
    Planas AM, Gorina R, Chamorro A (2006) Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 34:1267–1270. CrossRefPubMedGoogle Scholar
  55. 55.
    Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA et al (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–1361. CrossRefPubMedGoogle Scholar
  56. 56.
    Prinz M, Priller J (2017) The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 20:136–144. CrossRefPubMedGoogle Scholar
  57. 57.
    Ramos-Sevillano E, Urzainqui A, de Andres B, Gonzalez-Tajuelo R, Domenech M, Gonzalez-Camacho F, Sanchez-Madrid F, Brown JS, Garcia E, Yuste J (2016) PSGL-1 on leukocytes is a critical component of the host immune response against invasive pneumococcal disease. PLoS Pathog 12:e1005500. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ransohoff RM, Stevens B (2011) Neuroscience. How many cell types does it take to wire a brain? Science 333:1391–1392. CrossRefPubMedGoogle Scholar
  59. 59.
    Ritzel RM, Patel AR, Grenier JM, Crapser J, Verma R, Jellison ER, McCullough LD (2015) Functional differences between microglia and monocytes after ischemic stroke. J Neuroinflammation 12:106. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sako D, Comess KM, Barone KM, Camphausen RT, Cumming DA, Shaw GD (1995) A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 83:323–331CrossRefPubMedGoogle Scholar
  61. 61.
    Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163. CrossRefPubMedGoogle Scholar
  62. 62.
    Sasmono RT, Williams E (2012) Generation and characterization of MacGreen mice, the Cfs1r-EGFP transgenic mice. Methods Mol Biol 844:157–176. CrossRefPubMedGoogle Scholar
  63. 63.
    Schall TJ, Proudfoot AE (2011) Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 11:355–363. CrossRefPubMedGoogle Scholar
  64. 64.
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. CrossRefPubMedGoogle Scholar
  65. 65.
    Spertini C, Baisse B, Spertini O (2012) Ezrin-radixin-moesin-binding sequence of PSGL-1 glycoprotein regulates leukocyte rolling on selectins and activation of extracellular signal-regulated kinases. J Biol Chem 287:10693–10702. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Spertini O, Cordey AS, Monai N, Giuffre L, Schapira M (1996) P-selectin glycoprotein ligand 1 is a ligand for L-selectin on neutrophils, monocytes, and CD34+ hematopoietic progenitor cells. J Cell Biol 135:523–531CrossRefPubMedGoogle Scholar
  67. 67.
    Starck L, Popp K, Pircher H, Uckert W (2014) Immunotherapy with TCR-redirected T cells: comparison of TCR-transduced and TCR-engineered hematopoietic stem cell-derived T cells. J Immunol 192:206–213. CrossRefPubMedGoogle Scholar
  68. 68.
    Swiatkowski P, Murugan M, Eyo UB, Wang Y, Rangaraju S, Oh SB, Wu LJ (2016) Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience 318:22–33. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Szekanecz Z, Koch AE (2016) Successes and failures of chemokine-pathway targeting in rheumatoid arthritis. Nat Rev Rheumatol 12:5–13. CrossRefPubMedGoogle Scholar
  70. 70.
    Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117:531–539CrossRefPubMedGoogle Scholar
  71. 71.
    Ullrich N, Strecker JK, Minnerup J, Schilling M (2014) The temporo-spatial localization of polymorphonuclear cells related to the neurovascular unit after transient focal cerebral ischemia. Brain Res 1586:184–192. CrossRefPubMedGoogle Scholar
  72. 72.
    Villa E, Critelli R, Lei B, Marzocchi G, Camma C, Giannelli G, Pontisso P, Cabibbo G, Enea M, Colopi S et al (2016) Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut 65:861–869. CrossRefPubMedGoogle Scholar
  73. 73.
    Visentin S, Renzi M, Levi G (2001) Altered outward-rectifying K(+) current reveals microglial activation induced by HIV-1 Tat protein. Glia 33:181–190CrossRefPubMedGoogle Scholar
  74. 74.
    Walzlein JH, Synowitz M, Engels B, Markovic DS, Gabrusiewicz K, Nikolaev E, Yoshikawa K, Kaminska B, Kempermann G, Uckert W et al (2008) The antitumorigenic response of neural precursors depends on subventricular proliferation and age. Stem cells 26:2945–2954. CrossRefPubMedGoogle Scholar
  75. 75.
    Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J, Miskinyte G, Ge R, Ahlenius H, Lindvall O et al (2016) Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci 36:4182–4195. CrossRefPubMedGoogle Scholar
  76. 76.
    Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE (2006) Rosetta error model for gene expression analysis. Bioinformatics 22:1111–1121. CrossRefPubMedGoogle Scholar
  77. 77.
    Wirenfeldt M, Dissing-Olesen L, Anne Babcock A, Nielsen M, Meldgaard M, Zimmer J, Azcoitia I, Leslie RG, Dagnaes-Hansen F, Finsen B (2007) Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol 171:617–631. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Xia L, Sperandio M, Yago T, McDaniel JM, Cummings RD, Pearson-White S, Ley K, McEver RP (2002) P-selectin glycoprotein ligand-1-deficient mice have impaired leukocyte tethering to E-selectin under flow. J Clin Investig 109:939–950. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yildirim F, Ji S, Kronenberg G, Barco A, Olivares R, Benito E, Dirnagl U, Gertz K, Endres M, Harms C et al (2014) Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury. PLoS One 9:e95465. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhou J, Neale JH, Pomper MG, Kozikowski AP (2005) NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 4:1015–1026. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Golo Kronenberg
    • 1
    • 2
    • 3
  • Ria Uhlemann
    • 1
  • Nadine Richter
    • 4
  • Friederike Klempin
    • 1
    • 2
    • 4
  • Stephanie Wegner
    • 1
  • Lilian Staerck
    • 4
  • Susanne Wolf
    • 4
  • Wolfgang Uckert
    • 4
    • 5
  • Helmut Kettenmann
    • 4
  • Matthias Endres
    • 1
    • 6
  • Karen Gertz
    • 1
    Email author
  1. 1.Center for Stroke Research, Klinik für Neurologie, and Department of Experimental NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  2. 2.Klinik für Psychiatrie und Psychotherapie, Campus MitteCharité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  3. 3.Klinik und Poliklinik für Psychiatrie und Psychotherapie, Zentrum für NervenheilkundeUniversitätsmedizin RostockRostockGermany
  4. 4.Max-Delbruck-Center for Molecular Medicine (MDC) in the Helmholtz AssociationBerlinGermany
  5. 5.Institut für BiologieHumboldt-Universität BerlinBerlinGermany
  6. 6.DZNE (German Center for Neurodegenerative Diseases)BerlinGermany

Personalised recommendations