Skip to main content

Advertisement

Log in

MSA prions exhibit remarkable stability and resistance to inactivation

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/−), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt–Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/− mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/− mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson RJ, Frye MA, Abulseoud OA, Lee KH, McGillivray JA, Berk M, Tye SJ (2012) Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 36:1920–1933

    Article  PubMed  Google Scholar 

  2. Bartz JC, Kincaid AE, Bessen RA (2003) Rapid prion neuroinvasion following tongue infection. J Virol 77:583–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bernoulli C, Siegfried J, Baumgartner G, Regli F, Rabinowicz T, Gajdusek DC, Gibbs CJ Jr (1977) Danger of accidental person-to-person transmission of Creutzfeldt-Jakob disease by surgery. Lancet 309:478–479

    Article  Google Scholar 

  4. Bousset L, Brundin P, Böckmann A, Meier B, Melki R (2016) An efficient procedure for removal and inactivation of alpha-synuclein assemblies from laboratory materials. J Parkinsons Dis 6:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Böckmann A, Meier BH et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575

    Article  PubMed  PubMed Central  Google Scholar 

  6. Breid S, Bernis ME, Babila JT, Garza MC, Wille H, Tamgüney G (2016) Neuroinvasion of α-synuclein prionoids after intraperitoneal and intraglossal inoculation. J Virol 90:9182–9193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlson GA, Kingsbury DT, Goodman PA, Coleman S, Marshall ST, DeArmond S, Westaway D, Prusiner SB (1986) Linkage of prion protein and scrapie incubation time genes. Cell 46:503–511

    Article  CAS  PubMed  Google Scholar 

  8. Clavaguera F, Hench J, Lavenir I, Schweighauser G, Frank S, Goedert M, Tolnay M (2014) Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol 127:299–301

    Article  PubMed  Google Scholar 

  9. Corripio I, Sarró S, McKenna PJ, Molet J, Álvarez E, Pomarol-Clotet E, Portella MJ (2016) Clinical improvement in a treatment-resistant patient with schizophrenia treated with deep brain stimulation. Biol Psychiatry 80:e69–e70

    Article  PubMed  Google Scholar 

  10. Dowd RS, Pourfar M, Mogilner AY (2017) Deep brain stimulation for Tourette syndrome: a single-center series. J Neurosurg. doi: 10.3171/2016.10.JNS161573

    PubMed  Google Scholar 

  11. Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC et al (2009) Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc Natl Acad Sci USA 106:12926–12931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M (2010) Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330:980–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fanciulli A, Wenning GK (2015) Multiple-system atrophy. N Engl J Med 372:249–263

    Article  PubMed  Google Scholar 

  14. Fayad SM, Guzick AG, Reid AM, Mason DM, Bertone A, Foote KD, Okun MS, Goodman WK, Ward HE (2016) Six-nine year follow-up of deep brain stimulation for obsessive-compulsive disorder. PLoS One 11:e0167875

    Article  PubMed  PubMed Central  Google Scholar 

  15. Flechsig E, Hegyi I, Enari M, Schwarz P, Collinge J, Weissmann C (2001) Transmission of scrapie by steel-surface-bound prions. Mol Med 7:679–684

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fritschi SK, Cintron A, Ye L, Mahler J, Bühler A, Baumann F, Neumann M, Nilsson KPR, Hammarström P, Walker LC et al (2014) Aβ seeds resist inactivation by formaldehyde. Acta Neuropathol 128:477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frontzek K, Lutz MI, Aguzzi A, Kovacs GG, Budka H (2016) Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med Wkly 146:w14287

    PubMed  Google Scholar 

  18. Geser F, Wenning GK, Seppi K, Stampfer-Kountchev M, Scherfler C, Sawires M, Frick C, Ndayisaba J-P, Ulmer H, Pellecchia MT et al (2006) Progression of multiple system atrophy (MSA): a prospective natural history study by the European MSA Study Group (EMSA SG). Mov Disord 21:179–186

    Article  PubMed  Google Scholar 

  19. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    Article  CAS  PubMed  Google Scholar 

  20. Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC (1994) Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. J Neurol Neurosurg Psychiatry 57:757–758

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giles K, Woerman AL, Berry DB, Prusiner SB (2017) Bioassays and inactivation of prions. In: Prusiner SB (ed) Prion biology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  22. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon WS (1946) Advances in veterinary research. Vet Rec 58:516–520

    CAS  PubMed  Google Scholar 

  24. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125:861–870

    Article  PubMed  Google Scholar 

  25. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JDF, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS et al (2015) Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 525:247–250

    Article  CAS  PubMed  Google Scholar 

  26. Kimberlin RH, Walker CA (1986) Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J Gen Virol 67:255–263

    Article  PubMed  Google Scholar 

  27. Koga S, Aoki N, Uitti RJ, van Gerpen JA, Cheshire WP, Josephs KA, Wszolek ZK, Langston JW, Dickson DW (2015) When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology 85:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P et al (2016) Dura mater is a potential source of Aβ seeds. Acta Neuropathol 131:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. NeuroReport 12:2085–2090

    Article  CAS  PubMed  Google Scholar 

  30. Lakhan SE, Callaway E (2010) Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review. BMC Res Notes 3:60

    Article  PubMed  PubMed Central  Google Scholar 

  31. Levine DJ, Stöhr J, Falese LE, Ollesch J, Wille H, Prusiner SB, Long JR (2015) Mechanism of scrapie prion precipitation with phosphotungstate anions. ACS Chem Biol 10:1269–1277

    Article  CAS  PubMed  Google Scholar 

  32. Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease. J Pathol 155:9–15

    Article  CAS  PubMed  Google Scholar 

  33. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M (2013) Prion-like spreading of pathological alpha-synuclein in brain. Brain 136:1128–1138

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meissner WG, Laurencin C, Tranchant C, Witjas T, Viallet F, Guehl D, Damier P, Houeto J-L, Tison F, Eusebio A et al (2016) Outcome of deep brain stimulation in slowly progressive multiple system atrophy: a clinico-pathological series and review of the literature. Parkinsonism Relat Disord 24:69–75

    Article  PubMed  Google Scholar 

  35. Osaki Y, Ben-Shlomo Y, Wenning GK, Daniel SE, Hughes A, Lees AJ, Mathias CJ, Quinn N (2002) Do published criteria improve clinical diagnostic accuracy in multiple system atrophy? Neurology 59:1486–1491

    Article  CAS  PubMed  Google Scholar 

  36. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  CAS  PubMed  Google Scholar 

  37. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344

    Article  CAS  PubMed  Google Scholar 

  38. Peretz D, Supattapone S, Giles K, Vergara J, Freyman Y, Lessard P, Safar JG, Glidden DV, McCulloch C, Nguyen H-OB et al (2006) Inactivation of prions by acidic sodium dodecyl sulfate. J Virol 80:322–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poisson M, Magdelenat H, Foncin JF, Bleibel JM, Philippon J, Pertuiset B, Buge A (1980) Récepteurs d’cestrogénes et de progestérone dans les méningiomes. Rev Neurol (Paris) 136:193–203

    CAS  Google Scholar 

  40. Prusiner SB, Woerman AL, Rampersaud R, Watts JC, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with signs of Parkinson’s disease. Proc Natl Acad Sci USA 112:E5308–E5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S, Regenhardt RW, McGarvey NH, Ayers JI, Notterpek L, Borchelt DR et al (2014) Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci USA 111:10732–10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrPSc molecules with different conformations. Nat Med 4:1157–1165

    Article  CAS  PubMed  Google Scholar 

  43. Schweighauser M, Bacioglu M, Fritschi SK, Shimshek DR, Kahle PJ, Eisele YS, Jucker M (2015) Formaldehyde-fixed brain tissue from spontaneously ill α-synuclein transgenic mice induces fatal α-synucleinopathy in transgenic hosts. Acta Neuropathol 129:157–159

    Article  PubMed  Google Scholar 

  44. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  CAS  PubMed  Google Scholar 

  45. Stefanova N, Bücke P, Duerr S, Wenning GK (2009) Multiple system atrophy: an update. Lancet Neurol 8:1172–1178

    Article  CAS  PubMed  Google Scholar 

  46. Taylor DM (1999) Inactivation of prions by physical and chemical means. J Hosp Infect 43:S69–S76

    Article  PubMed  Google Scholar 

  47. Thomzig A, Kratzel C, Lenz G, Kruger D, Beekes M (2003) Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie. EMBO Rep 4:530–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomzig A, Wagenführ K, Daus ML, Joncic M, Schulz-Schaeffer WJ, Thanheiser M, Mielke M, Beekes M (2014) Decontamination of medical devices from pathological amyloid-β-, tau- and α-synuclein aggregates. Acta Neuropathol Commun 2:151

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann Neurol 44:415–422

    Article  CAS  PubMed  Google Scholar 

  50. Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249:180–182

    Article  CAS  PubMed  Google Scholar 

  51. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, DeArmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA 110:19555–19560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147

    Article  CAS  PubMed  Google Scholar 

  53. Woerman AL, Stöhr J, Aoyagi A, Rampersaud R, Krejciova Z, Watts JC, Ohyama T, Patel S, Widjaja K, Oehler A et al (2015) Propagation of prions causing synucleinopathies in cultured cells. Proc Natl Acad Sci USA 112:E4949–E4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan ZX, Stitz L, Heeg P, Pfaff E, Roth K (2004) Infectivity of prion protein bound to stainless steel wires: a model for testing decontamination procedures for transmissible spongiform encephalopathies. Infect Control Hosp Epidemiol 25:280–283

    Article  PubMed  Google Scholar 

  55. Zobeley E, Flechsig E, Cozzio A, Enari M, Weissmann C (1999) Infectivity of scrapie prions bound to a stainless steel surface. Mol Med 5:240–243

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Hunters Point animal facility staff for breeding and caring for the mice used in this study and Martin Ingelsson (Uppsala University) for providing control tissue.

Author information

Authors and Affiliations

Authors

Contributions

ALW, SHO, and SBP designed research; ALW, SAK, SP, YF, and AO performed research; AA, DAM, GMH, LTM, and SMG contributed new reagents/analytic tools; ALW, SAK, SP, SHO, and SBP analyzed data; and ALW, SHO, and SBP wrote the paper.

Corresponding author

Correspondence to Stanley B. Prusiner.

Ethics declarations

Conflict of interest

The Institute for Neurodegenerative Diseases has a research collaboration with Daiichi Sankyo (Tokyo, Japan). SBP is the chair of the Scientific Advisory Board of Alzheon, Inc., which has not contributed financial or any other support to these studies.

Ethical approval

Animals were maintained in an AAALAC-accredited facility in compliance with the Guide for the Care and Use of Laboratory Animals. All procedures used in this study were approved by the University of California, San Francisco, Institutional Animal Care and Use Committee.

Funding

This work was supported by grants from the National Institutes of Health (AG002132 and AG031220), as well as by gifts from the Glenn Foundation, Daiichi Sankyo, the Dana Foundation, the Henry M. Jackson Foundation, the Mary Jane Brinton Fund, the Rainwater Charitable Foundation, the Schott Foundation for Public Education, and the Sherman Fairchild Foundation. The Massachusetts Alzheimer’s Disease Research Center is supported by the National Institutes of Health (AG005134); the Parkinson’s UK Brain Bank at Imperial College London is funded by Parkinson’s UK, a charity registered in England and Wales (948776) and in Scotland (SC037554); and the Sydney Brain Bank is supported by Neuroscience Research Australia and the University of New South Wales. Glenda M. Halliday is a National Health and Medical Research Council of Australia Senior Principal Research Fellow (1079679).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woerman, A.L., Kazmi, S.A., Patel, S. et al. MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135, 49–63 (2018). https://doi.org/10.1007/s00401-017-1762-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1762-2

Keywords

Navigation