RNAi screen identifies essential regulators of human brain metastasis-initiating cells

  • Mohini Singh
  • Chitra Venugopal
  • Tomas Tokar
  • Kevin R. Brown
  • Nicole McFarlane
  • David Bakhshinyan
  • Thusyanth Vijayakumar
  • Branavan Manoranjan
  • Sujeivan Mahendram
  • Parvez Vora
  • Maleeha Qazi
  • Manvir Dhillon
  • Amy Tong
  • Kathrin Durrer
  • Naresh Murty
  • Robin Hallet
  • John A. Hassell
  • David R. Kaplan
  • Jean-Claude Cutz
  • Igor Jurisica
  • Jason Moffat
  • Sheila K. Singh
Original Paper

Abstract

Brain metastases (BM) are the most common brain tumor in adults and are a leading cause of cancer mortality. Metastatic lesions contain subclones derived from their primary lesion, yet their functional characterization is limited by a paucity of preclinical models accurately recapitulating the metastatic cascade, emphasizing the need for a novel approach to BM and their treatment. We identified a unique subset of stem-like cells from primary human patient brain metastases, termed brain metastasis-initiating cells (BMICs). We now establish a BMIC patient-derived xenotransplantation (PDXT) model as an investigative tool to comprehensively interrogate human BM. Using both in vitro and in vivo RNA interference screens of these BMIC models, we identified SPOCK1 and TWIST2 as essential BMIC regulators. SPOCK1 in particular is a novel regulator of BMIC self-renewal, modulating tumor initiation and metastasis from the lung to the brain. A prospective cohort of primary lung cancer specimens showed that SPOCK1 was overexpressed only in patients who ultimately developed BM. Protein–protein interaction network mapping between SPOCK1 and TWIST2 identified novel pathway interactors with significant prognostic value in lung cancer patients. Of these genes, INHBA, a TGF-β ligand found mutated in lung adenocarcinoma, showed reduced expression in BMICs with knockdown of SPOCK1. In conclusion, we have developed a useful preclinical model of BM, which has served to identify novel putative BMIC regulators, presenting potential therapeutic targets that block the metastatic process, and transform a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.

Keywords

Brain metastasis Brain metastasis-initiating cell BMIC BMIC regulators TWIST2 SPOCK1 Patient-derived xenotransplant Non-small cell lung cancer 

Supplementary material

401_2017_1757_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3043 kb)
401_2017_1757_MOESM2_ESM.xlsx (55 kb)
Supplementary material 2 (XLSX 54 kb)
401_2017_1757_MOESM3_ESM.xlsx (89 kb)
Supplementary material 3 (XLSX 88 kb)

References

  1. 1.
    Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A et al (2013) SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One 8:e74250. doi:10.1371/journal.pone.0074250 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi:10.1073/pnas.0530291100 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009. doi:10.1038/nature08021 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT et al (2015) Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:1164–1177. doi:10.1158/2159-8290.CD-15-0369 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, Devani B et al (2009) NAViGaTOR: network analysis, visualization and graphing Toronto. Bioinformatics 25:3327–3329. doi:10.1093/bioinformatics/btp595 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cancer Genome Atlas Research N (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550. doi:10.1038/nature13385 CrossRefGoogle Scholar
  7. 7.
    Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740. doi:10.1038/aps.2013.27 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cousin E, Hannequin D, Ricard S, Mace S, Genin E, Chansac C et al (2003) A risk for early-onset Alzheimer’s disease associated with the APBB1 gene (FE65) intron 13 polymorphism. Neurosci Lett 342:5–8CrossRefPubMedGoogle Scholar
  9. 9.
    Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075. doi:10.1038/nature07423 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Du L, Wang H, He L, Zhang J, Ni B, Wang X et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14:6751–6760. doi:10.1158/1078-0432.CCR-08-1034 CrossRefPubMedGoogle Scholar
  11. 11.
    Faltas B (2012) Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells. Front Oncol 2:68. doi:10.3389/fonc.2012.00068 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z et al (2011) Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 30:4707–4720. doi:10.1038/onc.2011.181 CrossRefPubMedGoogle Scholar
  13. 13.
    Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37:745–751CrossRefPubMedGoogle Scholar
  15. 15.
    Gobeil S, Zhu X, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22:2932–2940. doi:10.1101/gad.1714608 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770. doi:10.1038/nature05760 CrossRefPubMedGoogle Scholar
  17. 17.
    Gyorffy B, Surowiak P, Budczies J, Lanczky A (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 8:e82241. doi:10.1371/journal.pone.0082241 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549CrossRefPubMedGoogle Scholar
  19. 19.
    Ketela T, Heisler LE, Brown KR, Ammar R, Kasimer D, Surendra A et al (2011) A comprehensive platform for highly multiplexed mammalian functional genetic screens. BMC Genom 12:213. doi:10.1186/1471-2164-12-213 CrossRefGoogle Scholar
  20. 20.
    Kittanakom S, Arnoldo A, Brown KR, Wallace I, Kunavisarut T, Torti D et al (2013) Miniature short hairpin RNA screens to characterize antiproliferative drugs. G3 (Bethesda) 3:1375–1387. doi:10.1534/g3.113.006437 CrossRefGoogle Scholar
  21. 21.
    Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312. doi:10.1038/nrc2627 CrossRefPubMedGoogle Scholar
  22. 22.
    Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44:D536–D541. doi:10.1093/nar/gkv1115 CrossRefPubMedGoogle Scholar
  23. 23.
    Langley RR, Fidler IJ (2013) The biology of brain metastasis. Clin Chem 59:180–189. doi:10.1373/clinchem.2012.193342 CrossRefPubMedGoogle Scholar
  24. 24.
    Lee YS, Lee HH, Park J, Yoo EJ, Glackin CA, Choi YI et al (2003) Twist2, a novel ADD1/SREBP1c interacting protein, represses the transcriptional activity of ADD1/SREBP1c. Nucleic Acids Res 31:7165–7174CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD et al (2010) Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5:e14062. doi:10.1371/journal.pone.0014062 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li J, Sharkey CC, Huang D, King MR (2015) Nanobiotechnology for the therapeutic targeting of cancer cells in blood. Cell Mol Bioeng 8:137–150. doi:10.1007/s12195-015-0381-z CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. doi:10.1016/j.cell.2008.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mao Y, Zhang N, Xu J, Ding Z, Zong R, Liu Z (2012) Significance of heterogeneous Twist2 expression in human breast cancers. PLoS One 7:e48178. doi:10.1371/journal.pone.0048178 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Miao L, Wang Y, Xia H, Yao C, Cai H, Song Y (2013) SPOCK1 is a novel transforming growth factor-beta target gene that regulates lung cancer cell epithelial-mesenchymal transition. Biochem Biophys Res Commun 440:792–797. doi:10.1016/j.bbrc.2013.10.024 CrossRefPubMedGoogle Scholar
  30. 30.
    Mina LA, Sledge GW Jr (2011) Rethinking the metastatic cascade as a therapeutic target. Nature Rev Clin Oncol 8:325–332. doi:10.1038/nrclinonc.2011.59 Google Scholar
  31. 31.
    Murakami M, Ohkuma M, Nakamura M (2008) Molecular mechanism of transforming growth factor-beta-mediated inhibition of growth arrest and differentiation in a myoblast cell line. Dev Growth Differ 50:121–130. doi:10.1111/j.1440-169X.2007.00982.x CrossRefPubMedGoogle Scholar
  32. 32.
    Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A et al (2014) An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov 4:304–317. doi:10.1158/2159-8290.CD-13-0287 CrossRefPubMedGoogle Scholar
  33. 33.
    Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M et al (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138:51–62. doi:10.1016/j.cell.2009.04.030 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nolte SM, Venugopal C, McFarlane N, Morozova O, Hallett RM, O’Farrell E et al (2013) A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst 105:551–562. doi:10.1093/jnci/djt022 CrossRefPubMedGoogle Scholar
  35. 35.
    Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R et al (2012) Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Can Res 72:100–111. doi:10.1158/0008-5472.CAN-11-1403 CrossRefGoogle Scholar
  36. 36.
    Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498. doi:10.1016/j.stem.2011.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Patchell RA (2003) The management of brain metastases. Cancer Treat Rev 29:533–540CrossRefPubMedGoogle Scholar
  38. 38.
    Rahmathulla G, Toms SA, Weil RJ (2012) The molecular biology of brain metastasis. J Oncol 2012:723541. doi:10.1155/2012/723541 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Royston P, Altman DG (2013) External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol 13:33. doi:10.1186/1471-2288-13-33 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Saxena M, Christofori G (2013) Rebuilding cancer metastasis in the mouse. Mol Oncol 7:283–296. doi:10.1016/j.molonc.2013.02.009 CrossRefPubMedGoogle Scholar
  41. 41.
    Seder CW, Hartojo W, Lin L, Silvers AL, Wang Z, Thomas DG et al (2009) Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia 11:388–396CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shima Y, Kengaku M, Hirano T, Takeichi M, Uemura T (2004) Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell 7:205–216. doi:10.1016/j.devcel.2004.07.007 CrossRefPubMedGoogle Scholar
  43. 43.
    Shu YJ, Weng H, Ye YY, Hu YP, Bao RF, Cao Y et al (2015) SPOCK1 as a potential cancer prognostic marker promotes the proliferation and metastasis of gallbladder cancer cells by activating the PI3K/AKT pathway. Mol Cancer 14:12. doi:10.1186/s12943-014-0276-y CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Singh M, Manoranjan B, Mahendram S, McFarlane N, Venugopal C, Singh SK (2014) Brain metastasis-initiating cells: survival of the fittest. Int J Mol Sci 15:9117–9133. doi:10.3390/ijms15059117 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Can Res 63:5821–5828Google Scholar
  46. 46.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128 CrossRefPubMedGoogle Scholar
  47. 47.
    Soffietti R, Ruda R, Mutani R (2002) Management of brain metastases. J Neurol 249:1357–1369. doi:10.1007/s00415-002-0870-6 CrossRefPubMedGoogle Scholar
  48. 48.
    Su B, Gao L, Baranowski C, Gillard B, Wang J, Ransom R et al (2014) A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer. PLoS One 9:e101411. doi:10.1371/journal.pone.0101411 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nature Rev Clin Oncol 9:338–350. doi:10.1038/nrclinonc.2012.61 CrossRefGoogle Scholar
  50. 50.
    Therneau TMG, Patricia M (2000) Modeling survival data: extending the Cox model. Statistics for biology and health, 1st edn. Springer, New York. doi:10.1007/978-1-4757-3294-8 CrossRefGoogle Scholar
  51. 51.
    Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X (2008) Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J 55:11–21CrossRefPubMedGoogle Scholar
  52. 52.
    Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002–1016. doi:10.1016/j.cell.2014.01.040 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Venugopal C, Hallett R, Vora P, Manoranjan B, Mahendram S, Qazi MA et al (2015) Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clin Cancer Res 21:5324–5337. doi:10.1158/1078-0432.CCR-14-3147 CrossRefPubMedGoogle Scholar
  54. 54.
    Venugopal C, McFarlane NM, Nolte S, Manoranjan B, Singh SK (2012) Processing of primary brain tumor tissue for stem cell assays and flow sorting. J Vis Exp JoVE. doi:10.3791/4111 PubMedGoogle Scholar
  55. 55.
    Waghorne C, Thomas M, Lagarde A, Kerbel RS, Breitman ML (1988) Genetic evidence for progressive selection and overgrowth of primary tumors by metastatic cell subpopulations. Can Res 48:6109–6114Google Scholar
  56. 56.
    Wolf J, Muller-Decker K, Flechtenmacher C, Zhang F, Shahmoradgoli M, Mills GB et al (2014) An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation. Oncogene 33:4273–4278. doi:10.1038/onc.2013.515 CrossRefPubMedGoogle Scholar
  57. 57.
    Yang C, Fischer-Keso R, Schlechter T, Strobel P, Marx A, Hofmann I (2015) Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression. Tumour Biol. doi:10.1007/s13277-015-3628-3 Google Scholar
  58. 58.
    Yu F, Li G, Gao J, Sun Y, Liu P, Gao H et al (2016) SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and Temozolomide resistance. Cell Prolif. doi:10.1111/cpr.12241 Google Scholar
  59. 59.
    Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS et al (2015) Human non-small cell lung cancer expresses putative cancer stem cell markers and exhibits the transcriptomic profile of multipotent cells. BMC Cancer 15:84. doi:10.1186/s12885-015-1086-3 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang C, Browne A, Child D, Divito JR, Stevenson JA, Tanzi RE (2010) Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of beta-amyloid precursor protein. J Biol Chem 285:8515–8526. doi:10.1074/jbc.M109.079079 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mohini Singh
    • 1
    • 2
  • Chitra Venugopal
    • 1
    • 3
  • Tomas Tokar
    • 7
  • Kevin R. Brown
    • 4
    • 5
  • Nicole McFarlane
    • 1
    • 3
  • David Bakhshinyan
    • 1
    • 2
  • Thusyanth Vijayakumar
    • 1
    • 2
  • Branavan Manoranjan
    • 1
    • 2
  • Sujeivan Mahendram
    • 1
    • 3
  • Parvez Vora
    • 1
    • 3
  • Maleeha Qazi
    • 1
    • 2
  • Manvir Dhillon
    • 1
    • 3
  • Amy Tong
    • 4
    • 5
  • Kathrin Durrer
    • 4
    • 5
  • Naresh Murty
    • 3
  • Robin Hallet
    • 2
  • John A. Hassell
    • 2
  • David R. Kaplan
    • 4
    • 8
  • Jean-Claude Cutz
    • 9
  • Igor Jurisica
    • 6
    • 7
  • Jason Moffat
    • 4
    • 5
  • Sheila K. Singh
    • 1
    • 2
    • 3
  1. 1.MDCL 5027, Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonCanada
  2. 2.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
  3. 3.Department of SurgeryMcMaster UniversityHamiltonCanada
  4. 4.Department of Molecular GeneticsUniversity of TorontoTorontoCanada
  5. 5.Donnelly CentreTorontoCanada
  6. 6.Princess Margaret Cancer Centre, IBM Life Sciences Discovery CentreUniversity Health NetworkTorontoCanada
  7. 7.Departments of Medical Biophysics and Computer ScienceUniversity of TorontoTorontoCanada
  8. 8.The Hospital for Sick ChildrenTorontoCanada
  9. 9.Anatomic Pathology, St. Joseph’s HealthcareHamiltonCanada

Personalised recommendations