Skip to main content

Advertisement

Log in

Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Clearance of amyloid-beta (Aβ) from the brain is an important therapeutic strategy for Alzheimer’s disease (AD). Current studies mainly focus on the central approach of Aβ clearance by introducing therapeutic agents into the brain. In a previous study, we found that peripheral tissues and organs play important roles in clearing brain-derived Aβ, suggesting that the peripheral approach of removing Aβ from the blood may also be effective for AD therapy. Here, we investigated whether peritoneal dialysis, a clinically available therapeutic method for chronic kidney disease (CKD), reduces brain Aβ burden and attenuates AD-type pathologies and cognitive impairments. Thirty patients with newly diagnosed CKD were enrolled. The plasma Aβ concentrations of the patients were measured before and after peritoneal dialysis. APP/PS1 mice were subjected to peritoneal dialysis once a day for 1 month from 6 months of age (prevention study) or 9 months of age (treatment study). The Aβ in the interstitial fluid (ISF) was collected using microdialysis. Behavioural performance, long-term potentiation (LTP), Aβ burden and other AD-type pathologies were measured after 1 month of peritoneal dialysis. Peritoneal dialysis significantly reduced plasma Aβ levels in both CKD patients and APP/PS1 mice. Aβ levels in the brain ISF of APP/PS1 mice immediately decreased after reduction of Aβ in the blood during peritoneal dialysis. In both prevention and treatment studies, peritoneal dialysis substantially reduced Aβ deposition, attenuated other AD-type pathologies, including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, and synaptic dysfunction, and rescued the behavioural deficits of APPswe/PS1 mice. Importantly, the Aβ phagocytosis function of microglia was enhanced in APP/PS1 mice after peritoneal dialysis. Our study suggests that peritoneal dialysis is a promising therapeutic method for AD, and Aβ clearance using a peripheral approach could be a desirable therapeutic strategy for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W et al (2015) Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 88:289–297. doi:10.1016/j.neuron.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  2. Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N et al (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224. doi:10.1126/science.1161591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bu XL, Cao GQ, Shen LL, Xiang Y, Jiao SS, Liu YH et al (2015) Serum amyloid-beta levels are increased in patients with chronic obstructive pulmonary disease. Neurotox Res 28:346–351. doi:10.1007/s12640-015-9552-x

    Article  CAS  PubMed  Google Scholar 

  4. Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y et al (2015) A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol 22:1519–1525. doi:10.1111/ene.12477

    Article  PubMed  Google Scholar 

  5. Busche MA, Grienberger C, Keskin AD, Song B, Neumann U, Staufenbiel M et al (2015) Decreased amyloid-beta and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat Neurosci 18:1725–1727. doi:10.1038/nn.4163

    Article  CAS  PubMed  Google Scholar 

  6. Carrano A, Hoozemans JJ, van der Vies SM, Rozemuller AJ, van Horssen J, de Vries HE (2011) Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy. Antioxid Redox Signal 15:1167–1178. doi:10.1089/ars.2011.3895

    Article  CAS  PubMed  Google Scholar 

  7. Chai GS, Duan DX, Ma RH, Shen JY, Li HL, Ma ZW et al (2014) Humanin attenuates Alzheimer-like cognitive deficits and pathological changes induced by amyloid beta-peptide in rats. Neurosci Bull 30:923–935. doi:10.1007/s12264-014-1479-3

    Article  CAS  PubMed  Google Scholar 

  8. Chakraborty A, de Wit NM, van der Flier WM, de Vries HE (2017) The blood brain barrier in Alzheimer’s disease. Vascul Pharmacol 89:12–18. doi:10.1016/j.vph.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  9. Cirrito JR, May PC, O’Dell MA, Taylor JW, Parsadanian M, Cramer JW et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853

    CAS  PubMed  Google Scholar 

  10. Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513. doi:10.1038/jcbfm.2013.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135

    Article  CAS  PubMed  Google Scholar 

  12. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  13. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev 36:258–264

    Article  CAS  PubMed  Google Scholar 

  14. Guan H, Liu Y, Daily A, Police S, Kim MH, Oddo S et al (2009) Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer’s disease. J Neurosci Res 87:1462–1473. doi:10.1002/jnr.21944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P et al (2013) Sustained peripheral depletion of amyloid-beta with a novel form of neprilysin does not affect central levels of amyloid-beta. Brain 137:553–64. doi:10.1093/brain/awt308

    Article  PubMed  PubMed Central  Google Scholar 

  16. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ et al (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540:230–235. doi:10.1038/nature20587

    Article  CAS  PubMed  Google Scholar 

  17. Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chiang HC et al (2008) Overexpression of neprilysin reduces alzheimer amyloid-beta42 (Abeta42)-induced neuron loss and intraneuronal Abeta42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem 283:19066–19076. doi:10.1074/jbc.M710509200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices–a new method for the estimation of extracellular amino acids concentration. J Neurosci Methods 15:263–268

    Article  CAS  PubMed  Google Scholar 

  19. Jiao SS, Bu XL, Liu YH, Zhu C, Wang QH, Shen LL et al (2016) Sex Dimorphism profile of Alzheimer’s disease-type pathologies in an APP/PS1 mouse model. Neurotox Res 29:256–266. doi:10.1007/s12640-015-9589-x

    Article  CAS  PubMed  Google Scholar 

  20. Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ et al (2015) Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proc Natl Acad Sci USA 112:5225–5230. doi:10.1073/pnas.1422998112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joachim CL, Mori H, Selkoe DJ (1989) Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 341:226–230. doi:10.1038/341226a0

    Article  CAS  PubMed  Google Scholar 

  22. Kitaguchi N, Hasegawa M, Ito S, Kawaguchi K, Hiki Y, Nakai S et al (2015) A prospective study on blood Abeta levels and the cognitive function of patients with hemodialysis: a potential therapeutic strategy for Alzheimer’s disease. J Neural Transm (Vienna, Austria: 1996) 122:1593–1607. doi:10.1007/s00702-015-1431-3

    Article  CAS  Google Scholar 

  23. Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ (2012) Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neurol 8:465–469. doi:10.1038/nrneurol.2012.118

    CAS  PubMed  Google Scholar 

  24. Liu YH, Wang YR, Xiang Y, Zhou HD, Giunta B, Manucat-Tan NB et al (2015) Clearance of amyloid-beta in Alzheimer’s disease: shifting the action site from center to periphery. Mol Neurobiol 51:1–7. doi:10.1007/s12035-014-8694-9

    Article  PubMed  Google Scholar 

  25. Liu YH, Xiang Y, Wang YR, Jiao SS, Wang QH, Bu XL et al (2015) Association between serum amyloid-beta and renal functions: implications for roles of kidney in amyloid-beta clearance. Mol Neurobiol 52:115–119. doi:10.1007/s12035-014-8854-y

    Article  CAS  PubMed  Google Scholar 

  26. Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R et al (2015) Hyperglycemia modulates extracellular amyloid-beta concentrations and neuronal activity in vivo. J Clin Invest 125:2463–2467. doi:10.1172/JCI79742

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716. doi:10.1016/S1474-4422(10)70119-8

    Article  CAS  PubMed  Google Scholar 

  28. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. doi:10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452. doi:10.1038/nm840

    Article  CAS  PubMed  Google Scholar 

  31. Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684. doi:10.1016/S1474-4422(16)00070-3

    Article  CAS  PubMed  Google Scholar 

  32. Pipili C, Polydorou A, Pantelias K, Korfiatis P, Nikolakopoulos F, Grapsa E (2013) Improvement of hepatic encephalopathy by application of peritoneal dialysis in a patient with non-end-stage renal disease. Perit Dial Int 33:213–216. doi:10.3747/pdi.2011.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE et al (2014) Amyloid-beta efflux from the central nervous system into the plasma. Ann Neurol 76:837–844. doi:10.1002/ana.24270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakai K, Senda T, Hata R, Kuroda M, Hasegawa M, Kato M et al (2016) Patients that have undergone hemodialysis exhibit lower amyloid deposition in the brain: evidence supporting a therapeutic strategy for Alzheimer’s disease by removal of blood amyloid. J Alzheimers Dis 51:997–1002. doi:10.3233/JAD-151139

    Article  CAS  PubMed  Google Scholar 

  35. Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M et al (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73:2061–2070. doi:10.1212/WNL.0b013e3181c67808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 109:3510–3515. doi:10.1073/pnas.1112209109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. doi:10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siska Mortier NHL, De Vriese An S (2005) Animal models in peritoneal dialysis research: a need for consensus. Perit Dial Int 25:16–24

    PubMed  Google Scholar 

  39. Tholen S, Schmaderer C, Chmielewski S, Forstl H, Heemann U, Baumann M et al (2016) Reduction of amyloid-beta plasma levels by hemodialysis: an anti-amyloid treatment strategy? J Alzheimers disease 50:791–796. doi:10.3233/jad-150662

    Article  CAS  Google Scholar 

  40. Troncone L, Luciani M, Coggins M, Wilker EH, Ho CY, Codispoti KE et al (2016) Abeta amyloid pathology affects the hearts of patients with Alzheimer’s disease: mind the heart. J Am Coll Cardiol 68:2395–2407. doi:10.1016/j.jacc.2016.08.073

    Article  CAS  PubMed  Google Scholar 

  41. Walker JR, Pacoma R, Watson J, Ou W, Alves J, Mason DE et al (2013) Enhanced proteolytic clearance of plasma Abeta by peripherally administered neprilysin does not result in reduced levels of brain Abeta in mice. J Neurosci 33:2457–2464. doi:10.1523/JNEUROSCI.3407-12.2013

    Article  CAS  PubMed  Google Scholar 

  42. Wang YR, Wang QH, Zhang T, Liu YH, Yao XQ, Zeng F et al (2016) Associations between hepatic functions and plasma amyloid-beta levels-implications for the capacity of liver in peripheral amyloid-beta clearance. Mol Neurobiol 54:2338–2344. doi:10.1007/s12035-016-9826-1

    Article  PubMed  Google Scholar 

  43. Wu X, Bai Y, Tan T, Li H, Xia S, Chang X et al (2014) Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Front Behav Neurosci 8:234. doi:10.3389/fnbeh.2014.00234

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xiang Y, Bu XL, Liu YH, Zhu C, Shen LL, Jiao SS et al (2015) Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 130:487–499. doi:10.1007/s00401-015-1477-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiong H, Callaghan D, Wodzinska J, Xu J, Premyslova M, Liu QY et al (2011) Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer’s disease. Neurosci Bull 27:221–232. doi:10.1007/s12264-011-1015-7

    Article  CAS  PubMed  Google Scholar 

  46. Yao XQ, Jiao SS, Saadipour K, Zeng F, Wang QH, Zhu C et al (2015) p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer’s disease. Mol Psychiatry 20:1301–1310. doi:10.1038/mp.2015.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Number 81471296 and 81625007). W.S. is the holder of the Tier 1 Canada Research Chair in Alzheimer’s Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jiang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, WS., Shen, LL., Bu, XL. et al. Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model. Acta Neuropathol 134, 207–220 (2017). https://doi.org/10.1007/s00401-017-1721-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1721-y

Keywords

Navigation