Acta Neuropathologica

, Volume 134, Issue 1, pp 151–153 | Cite as

Regulation of cathepsin D activity by the FTLD protein progranulin

  • Xiaolai Zhou
  • Daniel H. Paushter
  • Tuancheng Feng
  • Cara M. Pardon
  • Christina S. Mendoza
  • Fenghua Hu


Lysosomal Storage Disease Neuronal Ceroid Lipofuscinosis FTLD Patient Early Onset Dementia Lysosomal Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Paul Saftig and Dr. Jianhua Zhang for Ctsd +/ mice, Dr. Haiyuan Yu for Cathepsin D cDNA, and Mrs. Xiaochun Wu for technical assistance. This work is supported by funding to F.H. from Weill Institute for Cell and Molecular Biology and NINDS (R01NS088448) and by funding to X. Z. from the Weill Institute Fleming Postdoctoral Fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no competing conflict of interest.

Supplementary material

401_2017_1719_MOESM1_ESM.pdf (226 kb)
Supplementary material 1 (PDF 226 kb)


  1. 1.
    Almeida MR, Macario MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I (2016) Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging 41(200):e201–e205Google Scholar
  2. 2.
    Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. BioEssays 31:1245–1254CrossRefPubMedGoogle Scholar
  3. 3.
    Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Berlingieri S, Iorio F, Oliva G, Polishchuck R, Brunetti-Pierri N, di Bernardo D (2011) Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 39:8677–8688CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carcel-Trullols J, Kovacs AD, Pearce DA (2015) Cell biology of the NCL proteins: what they do and don’t do. Biochim Biophys Acta 1852:2242–2255CrossRefPubMedGoogle Scholar
  5. 5.
    Cenik B, Sephton CF, Kutluk Cenik B, Herz J, Yu G (2012) Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem 287:32298–32306CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gopalakrishnan MM, Grosch HW, Locatelli-Hoops S, Werth N, Smolenova E, Nettersheim M, Sandhoff K, Hasilik A (2004) Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation. Biochem J 383:507–515CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gotzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G, Janssens J, van der Zee J, Lang CM, Kremmer E, Martin JJ, Engelborghs S, Kretzschmar HA, Arzberger T, Van Broeckhoven C, Haass C, Capell A (2014) Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 127:845–860PubMedGoogle Scholar
  8. 8.
    Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–667CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ketterer S, Gomez-Auli A, Hillebrand LE, Petrera A, Ketscher A, Reinheckel T (2016) Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. doi: 10.1111/febs.13980 Google Scholar
  10. 10.
    Laurent-Matha V, Lucas A, Huttler S, Sandhoff K, Garcia M, Rochefort H (2002) Procathepsin D interacts with prosaposin in cancer cells but its internalization is not mediated by LDL receptor-related protein. Exp Cell Res 277:210–219CrossRefPubMedGoogle Scholar
  11. 11.
    Palfree RG, Bennett HP, Bateman A (2015) The evolution of the secreted regulatory protein progranulin. PLoS One 10:e0133749CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roberson ED (2012) Mouse models of frontotemporal dementia. Ann Neurol 72:837–849CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, Rossi G, Pareyson D, Mole SE, Staropoli JF, Sims KB, Lewis J, Lin WL, Dickson DW, Dahl HH, Bahlo M, Berkovic SF (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vidoni C, Follo C, Savino M, Melone MA, Isidoro C (2016) The role of cathepsin d in the pathogenesis of human neurodegenerative disorders. Med Res Rev 36:845–870CrossRefPubMedGoogle Scholar
  15. 15.
    Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, Boudin H, Minami SS, Reichert M, Albrecht P, Gelfand JM, Cruz-Herranz A, Cordano C, Alavi MV, Leslie S, Seeley WW, Miller BL, Bigio E, Mesulam MM, Bogyo MS, Mackenzie IR, Staropoli JF, Cotman SL, Huang EJ, Gan L, Green AJ (2017) Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med. doi: 10.1126/scitranslmed.aah5642 PubMedGoogle Scholar
  16. 16.
    Yamada K, Matsushima R, Nishimura M, Hara-Nishimura I (2001) A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiol 127:1626–1634CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ, Smolka MB, Sun Y, Hu F (2015) Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol 210:991–1002CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUSA

Personalised recommendations