Acta Neuropathologica

, Volume 133, Issue 5, pp 839–856 | Cite as

Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers

  • Yuetiva Deming
  • Zeran Li
  • Manav Kapoor
  • Oscar Harari
  • Jorge L. Del-Aguila
  • Kathleen Black
  • David Carrell
  • Yefei Cai
  • Maria Victoria Fernandez
  • John Budde
  • Shengmei Ma
  • Benjamin Saef
  • Bill Howells
  • Kuan-lin Huang
  • Sarah Bertelsen
  • Anne M. Fagan
  • David M. Holtzman
  • John C. Morris
  • Sungeun Kim
  • Andrew J. Saykin
  • Philip L. De Jager
  • Marilyn Albert
  • Abhay Moghekar
  • Richard O’Brien
  • Matthias Riemenschneider
  • Ronald C. Petersen
  • Kaj Blennow
  • Henrik Zetterberg
  • Lennart Minthon
  • Vivianna M. Van Deerlin
  • Virginia Man-Yee Lee
  • Leslie M. Shaw
  • John Q. Trojanowski
  • Gerard Schellenberg
  • Jonathan L. Haines
  • Richard Mayeux
  • Margaret A. Pericak-Vance
  • Lindsay A. Farrer
  • Elaine R. Peskind
  • Ge Li
  • Antonio F. Di Narzo
  • Alzheimer’s Disease Neuroimaging Initiative (ADNI)
  • The Alzheimer Disease Genetic Consortium (ADGC)
  • John S. K. Kauwe
  • Alison M. Goate
  • Carlos Cruchaga
Original Paper

Abstract

More than 20 genetic loci have been associated with risk for Alzheimer’s disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case–control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = −0.059, P = 2.08 × 10−8) and within SERPINB1 on 6p25 (β = −0.025, P = 1.72 × 10−8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10−2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10−2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10−3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.

Keywords

Alzheimer’s disease Endophenotype Cerebrospinal fluid biomarkers Genome-wide association study 

Supplementary material

401_2017_1685_MOESM1_ESM.pdf (3.4 mb)
Supplementary material 1 (PDF 3468 kb)

References

  1. 1.
    Adams HH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Renteria ME, Trompet S, Arias-Vasquez A, Seshadri S, Desrivieres S et al (2016) Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci. doi:10.1038/nn.4398 PubMedGoogle Scholar
  2. 2.
    Andersson C, Blennow K, Almkvist O, Andreasen N, Engfeldt P, Johansson SE, Lindau M, Eriksdotter-Jonhagen M (2008) Increasing CSF phospho-tau levels during cognitive decline and progression to dementia. Neurobiol Aging 29:1466–1473. doi:10.1016/j.neurobiolaging.2007.03.027 CrossRefPubMedGoogle Scholar
  3. 3.
    Anttila V, Bulik-Sullivan B, Finucane HK, Bras J, Duncan L, Escott-Price V, Falcone G, Gormley P, Malik R, Patsopoulos N, et al (2016) Analysis of shared heritability in common disorders of the brain. bioRxiv doi:10.1101/048991
  4. 4.
    Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M et al (2014) Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model. Neurobiol Aging 35:1286–1292. doi:10.1016/j.neurobiolaging.2014.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Balestrini A, Cosentino C, Errico A, Garner E, Costanzo V (2010) GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat Cell Biol 12:484–491. doi:10.1038/ncb2050 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, Cruchaga C (2013) TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging 34(1711):e1715–e1717. doi:10.1016/j.neurobiolaging.2012.12.018 Google Scholar
  7. 7.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144. doi:10.1038/nrneurol.2010.4 CrossRefPubMedGoogle Scholar
  8. 8.
    Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797. doi:10.1101/gr.137323.112 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, Duncan L, ReproGen C, Psychiatric Genomics C, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control C et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241. doi:10.1038/ng.3406 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL, Neale BM, Schizophrenia Working Group of the Psychiatric Genomics C (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295. doi:10.1038/ng.3211 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. doi:10.1186/s13742-015-0047-8 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cross-Disorder Group of the Psychiatric Genomics C (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45:984–994. doi:10.1038/ng.2711 CrossRefGoogle Scholar
  13. 13.
    Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM, Benitez BA, Jeng AT, Skorupa T, Carrell D et al (2013) GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78:256–268. doi:10.1016/j.neuron.2013.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cruchaga C, Kauwe JS, Mayo K, Spiegel N, Bertelsen S, Nowotny P, Shah AR, Abraham R, Hollingworth P, Harold D et al (2010) SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer’s disease. PLoS Genet 6:e1001101. doi:10.1371/journal.pgen.1001101 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, Bertelsen S, Hinrichs A, Alzheimer’s Disease Neuroimaging I, Fagan AM et al (2012) Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet 21:4558–4571. doi:10.1093/hmg/dds296 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S, Clark C, Kerkman D, DeBernardis J, Li J et al (2004) MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J Intern Med 256:205–223. doi:10.1111/j.1365-2796.2004.01381.x CrossRefPubMedGoogle Scholar
  17. 17.
    De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, De Deyn PP, Coart E, Hansson O, Minthon L, Zetterberg H et al (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67:949–956. doi:10.1001/archneurol.2010.179 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Delaneau O, Marchini J, Consortium GP (2014) Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. doi:10.1038/ncomms4934 Google Scholar
  19. 19.
    Deming Y, Xia J, Cai Y, Lord J, Del-Aguila JL, Fernandez MV, Carrell D, Black K, Budde J, Ma S et al (2016) Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits. Scientific Reports 6:18092. doi:10.1038/srep18092 CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Deming Y, Xia J, Cai Y, Lord J, Holmans P, Bertelsen S, Holtzman D, Morris JC, Bales K, Pickering EH et al (2016) A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin. Neurobiol Aging 37(208):e201–e209. doi:10.1016/j.neurobiolaging.2015.09.009 Google Scholar
  21. 21.
    Dudbridge F (2016) Polygenic epidemiology. Genet Epidemiol 40:268–272. doi:10.1002/gepi.21966 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Escott-Price V, Shoai M, Pither R, Williams J, Hardy J (2017) Polygenic score prediction captures nearly all common genetic risk for Alzheimer’s disease. Neurobiol Aging 49:214-e217–214-e211. doi:10.1016/j.neurobiolaging.2016.07.018 CrossRefGoogle Scholar
  23. 23.
    Escott-Price V, Sims R, Bannister C, Harold D, Vronskaya M, Majounie E, Badarinarayan N, Gerad Perades, Morgan K, Gerad/Perades, consortia I, Consortia I et al (2015) Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain 138:3673–3684. doi:10.1093/brain/awv268 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Euesden J, Lewis CM, O’Reilly PF (2015) PRSice: polygenic Risk Score software. Bioinformatics 31:1466–1468. doi:10.1093/bioinformatics/btu848 CrossRefPubMedGoogle Scholar
  25. 25.
    Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, Holtzman DM (2009) Decreased cerebrospinal fluid Aβ(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 65:176–183. doi:10.1002/ana.21559 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/β-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64:343–349. doi:10.1001/archneur.64.3.noc60123 CrossRefPubMedGoogle Scholar
  27. 27.
    Farfel JM, Yu L, De Jager PL, Schneider JA, Bennett DA (2016) Association of APOE with tau-tangle pathology with and without β-amyloid. Neurobiol Aging 37:19–25. doi:10.1016/j.neurobiolaging.2015.09.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Farley K, Stolley JM, Zhao P, Cooley J, Remold-O’Donnell E (2012) A serpinB1 regulatory mechanism is essential for restricting neutrophil extracellular trap generation. J Immunol 189:4574–4581. doi:10.4049/jimmunol.1201167 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Farrer LA, Cupples L, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein e genotype and alzheimer disease: a meta-analysis. JAMA 278:1349–1356. doi:10.1001/jama.1997.03550160069041 CrossRefPubMedGoogle Scholar
  30. 30.
    Fleming LM, Weisgraber KH, Strittmatter WJ, Troncoso JC, Johnson GV (1996) Differential binding of apolipoprotein E isoforms to tau and other cytoskeletal proteins. Exp Neurol 138:252–260. doi:10.1006/exnr.1996.0064 CrossRefPubMedGoogle Scholar
  31. 31.
    Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiat 63:168–174. doi:10.1001/archpsyc.63.2.168 CrossRefPubMedGoogle Scholar
  32. 32.
    Grundberg E, Adoue V, Kwan T, Ge B, Duan QL, Lam KCL, Koka V, Kindmark A, Weiss ST, Tantisira K et al (2011) Global analysis of the impact of environmental perturbation on cis-regulation of gene expression. PLoS Genet. doi:10.1371/journal.pgen.1001279 Google Scholar
  33. 33.
    GTEx Consortium (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660. doi:10.1126/science.1262110 CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Lupton MK et al (2013) TREM2 variants in Alzheimer’s disease. New Engl J Med 368:117–127. doi:10.1056/NEJMoa1211851 CrossRefPubMedGoogle Scholar
  35. 35.
    Guo H, Fortune MD, Burren OS, Schofield E, Todd JA, Wallace C (2015) Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum Mol Genet 24:3305–3313. doi:10.1093/hmg/ddv077 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Han MR, Schellenberg GD, Wang LS, Alzheimer’s Disease Neuroimaging I (2010) Genome-wide association reveals genetic effects on human Aβ42 and tau protein levels in cerebrospinal fluids: a case control study. BMC Neurol 10:90. doi:10.1186/1471-2377-10-90 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease (vol 41, pg 1088, 2009). Nat Genet 41:1156. doi:10.1038/ng1009-1156d CrossRefGoogle Scholar
  38. 38.
    Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372. doi:10.1038/nrn3880 CrossRefPubMedGoogle Scholar
  39. 39.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435. doi:10.1038/ng.803 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44:955. doi:10.1038/ng.2354 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol 57:1168–1174CrossRefPubMedGoogle Scholar
  42. 42.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. New Engl J Med 368:107–116. doi:10.1056/NEJMoa1211103 CrossRefPubMedGoogle Scholar
  43. 43.
    Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H, Sasaki H, Abe K, Iwatsubo T, Kosaka T et al (1998) Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: a study in Japan. Ann Neurol 44:17–26. doi:10.1002/ana.410440108 CrossRefPubMedGoogle Scholar
  44. 44.
    Kauwe JS, Cruchaga C, Bertelsen S, Mayo K, Latu W, Nowotny P, Hinrichs AL, Fagan AM, Holtzman DM, Alzheimer’s Disease Neuroimaging I et al (2010) Validating predicted biological effects of Alzheimer’s disease associated SNPs using CSF biomarker levels. J Alzheimers Dis 21:833–842. doi:10.3233/JAD-2010-091711 PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kauwe JS, Cruchaga C, Mayo K, Fenoglio C, Bertelsen S, Nowotny P, Galimberti D, Scarpini E, Morris JC, Fagan AM et al (2008) Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proc Natl Acad Sci USA 105:8050–8054. doi:10.1073/pnas.0801227105 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, Shaw LM, Trojanowski JQ, Potkin SG, Huentelman MJ et al (2011) Genome-wide association study of CSF biomarkers Aβ1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology 76:69–79. doi:10.1212/WNL.0b013e318204a397 CrossRefPubMedGoogle Scholar
  47. 47.
    Kyrousi C, Arbi M, Pilz GA, Pefani DE, Lalioti ME, Ninkovic J, Gotz M, Lygerou Z, Taraviras S (2015) Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 142:3661–3674. doi:10.1242/dev.126342 CrossRefPubMedGoogle Scholar
  48. 48.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458. doi:10.1038/ng.2802 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Leoni V, Solomon A, Kivipelto M (2010) Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment. Biochem Soc Trans 38:1021–1025. doi:10.1042/BST0381021 CrossRefPubMedGoogle Scholar
  50. 50.
    Lepretre C, Tchakarska G, Blibech H, Lebon C, Torriglia A (2013) Apoptosis-inducing factor (AIF) and leukocyte elastase inhibitor/L-DNase II (LEI/LDNaseII), can interact to conduct caspase-independent cell death. Apoptosis 18:1048–1059. doi:10.1007/s10495-013-0862-2 CrossRefPubMedGoogle Scholar
  51. 51.
    Li QS, Parrado AR, Samtani MN, Narayan VA, Alzheimer’s Disease Neuroimaging I (2015) Variations in the FRA10AC1 Fragile Site and 15q21 Are Associated with Cerebrospinal Fluid Aβ1-42 Level. PLoS ONE 10:e0134000. doi:10.1371/journal.pone.0134000 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Liraz O, Boehm-Cagan A, Michaelson DM (2013) ApoE4 induces Aβ42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol Neurodegener 8:16. doi:10.1186/1750-1326-8-16 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Louwersheimer E, Wolfsgruber S, Espinosa A, Lacour A, Heilmann-Heimbach S, Alegret M, Hernandez I, Rosende-Roca M, Tarraga L, Boada M et al (2016) Alzheimer’s disease risk variants modulate endophenotypes in mild cognitive impairment. Alzheimers Dement 12:872–881. doi:10.1016/j.jalz.2016.01.006 CrossRefPubMedGoogle Scholar
  54. 54.
    Martiskainen H, Helisalmi S, Viswanathan J, Kurki M, Hall A, Herukka SK, Sarajarvi T, Natunen T, Kurkinen KM, Huovinen J et al (2015) Effects of Alzheimer’s disease-associated risk loci on cerebrospinal fluid biomarkers and disease progression: a polygenic risk score approach. J Alzheimers Dis 43:565–573. doi:10.3233/JAD-140777 PubMedGoogle Scholar
  55. 55.
    Morris JC, Price JL (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 17:101–118CrossRefPubMedGoogle Scholar
  56. 56.
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441. doi:10.1038/ng.801 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    O’Bryant SE, Lacritz LH, Hall J, Waring SC, Chan W, Khodr ZG, Massman PJ, Hobson V, Cullum CM (2010) Validation of the new interpretive guidelines for the clinical dementia rating scale sum of boxes score in the national Alzheimer’s coordinating center database. Arch Neurol 67:746–749. doi:10.1001/archneurol.2010.115 PubMedPubMedCentralGoogle Scholar
  58. 58.
    O’Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ, Lupo PJ, Reisch JS, Doody R, Texas Alzheimer’s Research C (2008) Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: a Texas Alzheimer’s research consortium study. Arch Neurol 65:1091–1095. doi:10.1001/archneur.65.8.1091 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M, Holtta M, Rosen C, Olsson C, Strobel G et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684. doi:10.1016/S1474-4422(16)00070-3 CrossRefPubMedGoogle Scholar
  60. 60.
    Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM, Fenoglio C, Galimberti D, Borroni B, Cruchaga C (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–933. doi:10.1007/s00401-016-1533-5 CrossRefPubMedGoogle Scholar
  61. 61.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847 CrossRefPubMedGoogle Scholar
  62. 62.
    Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337. doi:10.1093/bioinformatics/btq419 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, Popp J, Lacour A, Drichel D, Louwersheimer E et al (2014) SUCLG2 identified as both a determinator of CSF Aβ1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet 23:6644–6658. doi:10.1093/hmg/ddu372 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ridge PG, Hoyt KB, Boehme K, Mukherjee S, Crane PK, Haines JL, Mayeux R, Farrer LA, Pericak-Vance MA, Schellenberg GD et al (2016) Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol Aging 41(200):e213–e220. doi:10.1016/j.neurobiolaging.2016.02.024 Google Scholar
  65. 65.
    Sabuncu MR, Buckner RL, Smoller JW, Lee PH, Fischl B, Sperling RA, Alzheimer’s Disease Neuroimaging I (2012) The association between a polygenic Alzheimer score and cortical thickness in clinically normal subjects. Cereb Cortex 22:2653–2661. doi:10.1093/cercor/bhr348 CrossRefPubMedGoogle Scholar
  66. 66.
    Sampson JN, Wheeler WA, Yeager M, Panagiotou O, Wang Z, Berndt SI, Lan Q, Abnet CC, Amundadottir LT, Figueroa JD et al (2015) Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J Natl Cancer Inst 107:djv279. doi:10.1093/jnci/djv279 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. doi:10.15252/emmm.201606210 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358. doi:10.1093/bioinformatics/bts163 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413. doi:10.1002/ana.21610 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213. doi:10.1038/ng1706 CrossRefPubMedGoogle Scholar
  71. 71.
    Sleegers K, Bettens K, De Roeck A, Van Cauwenberghe C, Cuyvers E, Verheijen J, Struyfs H, Van Dongen J, Vermeulen S, Engelborghs S et al (2015) A 22-single nucleotide polymorphism Alzheimer’s disease risk score correlates with family history, onset age, and cerebrospinal fluid Aβ42. Alzheimers Dement 11:1452–1460. doi:10.1016/j.jalz.2015.02.013 CrossRefPubMedGoogle Scholar
  72. 72.
    Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B et al (2003) Decreased β-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289:2094–2103. doi:10.1001/jama.289.16.2094 CrossRefPubMedGoogle Scholar
  73. 73.
    Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A, Weale ME, Hardy J (2011) Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem 119:275–282. doi:10.1111/j.1471-4159.2011.07432.x CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Turner SD (2014) qqman: an R package for visualizing GWAS results using QQ and manhattan plots. bioRxiv doi:10.1101/005165
  75. 75.
    Van Eldik LJ, Carrillo MC, Cole PE, Feuerbach D, Greenberg BD, Hendrix JA, Kennedy M, Kozauer N, Margolin RA, Molinuevo JL et al (2016) The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv 2:99–109. doi:10.1016/j.trci.2016.05.001 CrossRefGoogle Scholar
  76. 76.
    Visscher PM, Hemani G, Vinkhuyzen AA, Chen GB, Lee SH, Wray NR, Goddard ME, Yang J (2014) Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet 10:e1004269. doi:10.1371/journal.pgen.1004269 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi:10.1093/nar/gkq603 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934. doi:10.1093/nar/gkr917 CrossRefPubMedGoogle Scholar
  79. 79.
    Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238-U1195. doi:10.1038/ng.2756 CrossRefGoogle Scholar
  80. 80.
    Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191. doi:10.1093/bioinformatics/btq340 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, Robinson MR, Perry JRB, Nolte IM, van Vliet-Ostaptchouk JV et al (2015) Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet 47:1114. doi:10.1038/ng.3390 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yang JA, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82. doi:10.1016/j.ajhg.2010.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S et al (2015) Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886. doi:10.1038/nm.3913 CrossRefPubMedGoogle Scholar
  84. 84.
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. doi:10.1523/JNEUROSCI.1860-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray NR, Visscher PM et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481–487. doi:10.1038/ng.3538 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yuetiva Deming
    • 1
  • Zeran Li
    • 1
  • Manav Kapoor
    • 2
  • Oscar Harari
    • 1
  • Jorge L. Del-Aguila
    • 1
  • Kathleen Black
    • 1
  • David Carrell
    • 1
  • Yefei Cai
    • 1
  • Maria Victoria Fernandez
    • 1
  • John Budde
    • 1
  • Shengmei Ma
    • 1
  • Benjamin Saef
    • 1
  • Bill Howells
    • 1
  • Kuan-lin Huang
    • 3
    • 4
  • Sarah Bertelsen
    • 2
  • Anne M. Fagan
    • 5
    • 6
    • 7
  • David M. Holtzman
    • 5
    • 6
    • 7
    • 8
  • John C. Morris
    • 5
    • 6
    • 7
    • 8
  • Sungeun Kim
    • 9
    • 10
  • Andrew J. Saykin
    • 9
  • Philip L. De Jager
    • 11
    • 12
    • 13
  • Marilyn Albert
    • 14
  • Abhay Moghekar
    • 14
  • Richard O’Brien
    • 15
  • Matthias Riemenschneider
    • 16
  • Ronald C. Petersen
    • 17
  • Kaj Blennow
    • 18
    • 19
  • Henrik Zetterberg
    • 18
    • 19
    • 20
  • Lennart Minthon
    • 21
  • Vivianna M. Van Deerlin
    • 22
  • Virginia Man-Yee Lee
    • 22
  • Leslie M. Shaw
    • 22
  • John Q. Trojanowski
    • 22
  • Gerard Schellenberg
    • 22
  • Jonathan L. Haines
    • 23
  • Richard Mayeux
    • 24
  • Margaret A. Pericak-Vance
    • 25
  • Lindsay A. Farrer
    • 26
  • Elaine R. Peskind
    • 27
    • 28
  • Ge Li
    • 27
    • 29
  • Antonio F. Di Narzo
    • 30
  • Alzheimer’s Disease Neuroimaging Initiative (ADNI)
  • The Alzheimer Disease Genetic Consortium (ADGC)
  • John S. K. Kauwe
    • 31
  • Alison M. Goate
    • 2
  • Carlos Cruchaga
    • 1
    • 8
  1. 1.Department of PsychiatryWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Neuroscience, Ronald M Loeb Center for Alzheimer’s DiseaseIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of MedicineWashington University School of MedicineSt. LouisUSA
  4. 4.McDonnell Genome InstituteWashington University School of MedicineSt. LouisUSA
  5. 5.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  6. 6.Knight Alzheimer’s Disease Research CenterWashington University School of MedicineSt. LouisUSA
  7. 7.Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisUSA
  8. 8.Department of Developmental BiologyWashington University School of MedicineSt. LouisUSA
  9. 9.Indiana Alzheimer Disease Center and Center for NeuroimagingIndiana University School of MedicineIndianapolisUSA
  10. 10.Department of Electrical and Computer EngineeringState University of New YorkOswegoUSA
  11. 11.Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Institute for the NeurosciencesBrigham and Women’s HospitalBostonUSA
  12. 12.Harvard Medical SchoolBostonUSA
  13. 13.Program in Medical and Population GeneticsBroad Institute of Harvard University and M.I.T.CambridgeUSA
  14. 14.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  15. 15.Department of NeurologyDuke Medical CenterDurhamUSA
  16. 16.Clinic of Psychiatry and PsychotherapySaarland UniversityHomburg/SaarGermany
  17. 17.Department of NeurologyMayo ClinicRochesterUSA
  18. 18.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
  19. 19.Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University HospitalUniversity of GothenburgMölndalSweden
  20. 20.Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
  21. 21.Clinical Memory Research Unit, Department of Clinical SciencesLund UniversityLundSweden
  22. 22.Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  23. 23.Department of Molecular Physiology and Biophysics, Vanderbilt Center for Human Genetics ResearchVanderbilt UniversityNashvilleUSA
  24. 24.Department of Neurology, Taub Institute on Alzheimer’s Disease and the Aging Brain, and Gertrude H. Sergievsky CenterColumbia UniversityNew YorkUSA
  25. 25.The John P. Hussman Institute for Human Genomics, and Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of MiamiMiamiUSA
  26. 26.Departments of Biostatistics, Medicine (Genetics Program), Ophthalmology, Epidemiology, and NeurologyBoston UniversityBostonUSA
  27. 27.Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleUSA
  28. 28.VISN-20 Mental Illness Research, Education, and Clinical CenterVA Puget Sound Health Care SystemSeattleUSA
  29. 29.VISN-20 Geriatric Research, Education, and Clinical CenterVA Puget Sound Health Care SystemSeattleUSA
  30. 30.Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkUSA
  31. 31.Department of BiologyBrigham Young UniversityProvoUSA

Personalised recommendations