Acta Neuropathologica

, Volume 133, Issue 4, pp 517–533 | Cite as

Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy

  • Vanessa Schartner
  • Norma B. Romero
  • Sandra Donkervoort
  • Susan Treves
  • Pinki Munot
  • Tyler Mark Pierson
  • Ivana Dabaj
  • Edoardo Malfatti
  • Irina T. Zaharieva
  • Francesco Zorzato
  • Osorio Abath Neto
  • Guy Brochier
  • Xavière Lornage
  • Bruno Eymard
  • Ana Lía Taratuto
  • Johann Böhm
  • Hernan Gonorazky
  • Leigh Ramos-Platt
  • Lucy Feng
  • Rahul Phadke
  • Diana X. Bharucha-Goebel
  • Charlotte Jane Sumner
  • Mai Thao Bui
  • Emmanuelle Lacene
  • Maud Beuvin
  • Clémence Labasse
  • Nicolas Dondaine
  • Raphael Schneider
  • Julie Thompson
  • Anne Boland
  • Jean-François Deleuze
  • Emma Matthews
  • Aleksandra Nadaj Pakleza
  • Caroline A. Sewry
  • Valérie Biancalana
  • Susana Quijano-Roy
  • Francesco Muntoni
  • Michel Fardeau
  • Carsten G. Bönnemann
  • Jocelyn Laporte
Original Paper

Abstract

Muscle contraction upon nerve stimulation relies on excitation–contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR.

Keywords

DHPR Congenital myopathy Excitation–contraction coupling Triad Centronuclear myopathy Core myopathy Myotubular myopathy 

Supplementary material

401_2016_1656_MOESM1_ESM.pdf (111.9 mb)
Supplementary material 1 (PDF 114621 kb)

References

  1. 1.
    Al-Qusairi L, Laporte J (2011) T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 1:26. doi:10.1186/2044-5040-1-26 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ (2011) Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 70:662–665. doi:10.1002/ana.22510 CrossRefPubMedGoogle Scholar
  3. 3.
    Bevilacqua JA, Monnier N, Bitoun M, Eymard B, Ferreiro A, Monges S, Lubieniecki F, Taratuto AL, Laquerriere A, Claeys KG et al (2011) Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol 37:271–284. doi:10.1111/j.1365-2990.2010.01149.x CrossRefPubMedGoogle Scholar
  4. 4.
    Censier K, Urwyler A, Zorzato F, Treves S (1998) Intracellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. Effect of overexpression of recombinant wild-type and Arg163Cys mutated ryanodine receptors. J Clin Invest 101:1233–1242. doi:10.1172/JCI993 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chaudhari N (1992) A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem 267:25636–25639PubMedGoogle Scholar
  6. 6.
    Dowling JJ, Lawlor MW, Dirksen RT (2014) Triadopathies: an emerging class of skeletal muscle diseases. Neurotherapeutics 11:773–785. doi:10.1007/s13311-014-0300-3 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ducreux S, Zorzato F, Muller C, Sewry C, Muntoni F, Quinlivan R, Restagno G, Girard T, Treves S (2004) Effect of ryanodine receptor mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals and patients affected by central core disease. J Biol Chem 279:43838–43846. doi:10.1074/jbc.M403612200 CrossRefPubMedGoogle Scholar
  8. 8.
    Dulhunty AF, Karunasekara Y, Curtis SM, Harvey PJ, Board PG, Casarotto MG (2005) Role of some unconserved residues in the “C” region of the skeletal DHPR II-III loop. Front Biosci 10:1368–1381CrossRefPubMedGoogle Scholar
  9. 9.
    Eberl DF, Ren D, Feng G, Lorenz LJ, Van Vactor D, Hall LM (1998) Genetic and developmental characterization of Dmca1D, a calcium channel alpha1 subunit gene in Drosophila melanogaster. Genetics 148:1159–1169PubMedPubMedCentralGoogle Scholar
  10. 10.
    Engel AG, Franzini-Armstrong C (2004) Myology, basic and clinical. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Fischer D, Herasse M, Bitoun M, Barragan-Campos HM, Chiras J, Laforet P, Fardeau M, Eymard B, Guicheney P, Romero NB (2006) Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain 129:1463–1469. doi:10.1093/brain/awl071 CrossRefPubMedGoogle Scholar
  12. 12.
    Franzini-Armstrong C, Pincon-Raymond M, Rieger F (1991) Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol 146:364–376CrossRefPubMedGoogle Scholar
  13. 13.
    Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, Blavier A, Laporte J, Muller J (2015) VaRank: a simple and powerful tool for ranking genetic variants. PeerJ 3:e796. doi:10.7717/peerj.796 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hunter JM, Ahearn ME, Balak CD, Liang WS, Kurdoglu A, Corneveaux JJ, Russell M, Huentelman MJ, Craig DW, Carpten J et al (2015) Novel pathogenic variants and genes for myopathies identified by whole exome sequencing. Mol Genet Genomic Med 3:283–301. doi:10.1002/mgg3.142 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jurkat-Rott K, Lehmann-Horn F (2004) The impact of splice isoforms on voltage-gated calcium channel alpha1 subunits. J Physiol 554:609–619. doi:10.1113/jphysiol.2003.052712 CrossRefPubMedGoogle Scholar
  16. 16.
    Jurkat-Rott K, Lehmann-Horn F, Elbaz A, Heine R, Gregg RG, Hogan K, Powers PA, Lapie P, Vale-Santos JE, Weissenbach J et al (1994) A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 3:1415–1419CrossRefPubMedGoogle Scholar
  17. 17.
    Klein A, Jungbluth H, Clement E, Lillis S, Abbs S, Munot P, Pane M, Wraige E, Schara U, Straub V et al (2011) Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch Neurol 68:1171–1179. doi:10.1001/archneurol.2011.188 CrossRefPubMedGoogle Scholar
  18. 18.
    Knudson CM, Chaudhari N, Sharp AH, Powell JA, Beam KG, Campbell KP (1989) Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 264:1345–1348PubMedGoogle Scholar
  19. 19.
    Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor alpha1S II–III loop for skeletal-type excitation–contraction coupling. J Biol Chem 279:4721–4728. doi:10.1074/jbc.M307538200 CrossRefPubMedGoogle Scholar
  20. 20.
    Kung AW, Lau KS, Fong GC, Chan V (2004) Association of novel single nucleotide polymorphisms in the calcium channel alpha 1 subunit gene (Ca(v)1.1) and thyrotoxic periodic paralysis. J Clin Endocrinol Metab 89:1340–1345. doi:10.1210/jc.2003-030924 CrossRefPubMedGoogle Scholar
  21. 21.
    Lu X, Xu L, Meissner G (1994) Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem 269:6511–6516PubMedGoogle Scholar
  22. 22.
    Malfatti E, Bohm J, Lacene E, Beuvin M, Romero NB, Laporte J (2015) A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J Neuromuscul Dis 2:219–227. doi:10.3233/JND-150085 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Malfatti E, Romero NB (2016) Nemaline myopathies: state of the art. Rev Neurol (Paris) 172:614–619. doi:10.1016/j.neurol.2016.08.004 CrossRefGoogle Scholar
  24. 24.
    Matthews E, Portaro S, Ke Q, Sud R, Haworth A, Davis MB, Griggs RC, Hanna MG (2011) Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology 77:1960–1964. doi:10.1212/WNL.0b013e31823a0cb6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 60:1316–1325CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nance JR, Dowling JJ, Gibbs EM, Bonnemann CG (2012) Congenital myopathies: an update. Curr Neurol Neurosci Rep 12:165–174. doi:10.1007/s11910-012-0255-x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    North KN (2011) Clinical approach to the diagnosis of congenital myopathies. Semin Pediatr Neurol 18:216–220. doi:10.1016/j.spen.2011.10.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Pai AC (1965) Developmental genetics of a lethal mutation, muscular dysgenesis (Mdg), in the mouse. Ii. Developmental analysis. Dev Biol 11:93–109CrossRefPubMedGoogle Scholar
  29. 29.
    Pfeffer G, Elliott HR, Griffin H, Barresi R, Miller J, Marsh J, Evila A, Vihola A, Hackman P, Straub V et al (2012) Titin mutation segregates with hereditary myopathy with early respiratory failure. Brain 135:1695–1713. doi:10.1093/brain/aws102 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pietri-Rouxel F, Gentil C, Vassilopoulos S, Baas D, Mouisel E, Ferry A, Vignaud A, Hourde C, Marty I, Schaeffer L et al (2010) DHPR alpha1S subunit controls skeletal muscle mass and morphogenesis. EMBO J 29:643–654. doi:10.1038/emboj.2009.366 CrossRefPubMedGoogle Scholar
  31. 31.
    Powell JA, Petherbridge L, Flucher BE (1996) Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle. J Cell Biol 134:375–387CrossRefPubMedGoogle Scholar
  32. 32.
    Ptacek LJ, Tawil R, Griggs RC, Engel AG, Layzer RB, Kwiecinski H, McManis PG, Santiago L, Moore M, Fouad G et al (1994) Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77:863–868CrossRefPubMedGoogle Scholar
  33. 33.
    Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF (2014) Skeletal muscle excitation–contraction coupling: who are the dancing partners? Int J Biochem Cell Biol 48:28–38. doi:10.1016/j.biocel.2013.12.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Rezgui SS, Vassilopoulos S, Brocard J, Platel JC, Bouron A, Arnoult C, Oddoux S, Garcia L, De Waard M, Marty I (2005) Triadin (Trisk 95) overexpression blocks excitation–contraction coupling in rat skeletal myotubes. J Biol Chem 280:39302–39308. doi:10.1074/jbc.M506566200 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Romero NB, Clarke NF (2013) Congenital myopathies. Handb Clin Neurol 113:1321–1336. doi:10.1016/B978-0-444-59565-2.00004-6 CrossRefPubMedGoogle Scholar
  36. 36.
    Sekulic-Jablanovic M, Palmowski-Wolfe A, Zorzato F, Treves S (2015) Characterization of excitation–contraction coupling components in human extraocular muscles. Biochem J 466:29–36. doi:10.1042/BJ20140970 CrossRefPubMedGoogle Scholar
  37. 37.
    Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, Kennerson M, Nicholson G, Biancalana V, Ilkovski B et al (2010) Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord 20:229–237. doi:10.1016/j.nmd.2010.02.016 CrossRefPubMedGoogle Scholar
  38. 38.
    Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA (2012) Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet 21:1312–1324. doi:10.1093/hmg/ddr568 CrossRefPubMedGoogle Scholar
  39. 39.
    Treves S, Pouliquin R, Moccagatta L, Zorzato F (2002) Functional properties of EGFP-tagged skeletal muscle calcium-release channel (ryanodine receptor) expressed in COS-7 cells: sensitivity to caffeine and 4-chloro-m-cresol. Cell Calcium 31:1–12CrossRefPubMedGoogle Scholar
  40. 40.
    Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395. doi:10.1126/science.aad2395 CrossRefPubMedGoogle Scholar
  41. 41.
    Zorzato F, Scutari E, Tegazzin V, Clementi E, Treves S (1993) Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release. Mol Pharmacol 44:1192–1201PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vanessa Schartner
    • 1
    • 2
    • 3
    • 4
  • Norma B. Romero
    • 5
    • 6
  • Sandra Donkervoort
    • 7
  • Susan Treves
    • 8
    • 9
  • Pinki Munot
    • 10
  • Tyler Mark Pierson
    • 11
    • 12
  • Ivana Dabaj
    • 13
    • 14
    • 15
  • Edoardo Malfatti
    • 5
    • 6
  • Irina T. Zaharieva
    • 10
  • Francesco Zorzato
    • 8
    • 9
  • Osorio Abath Neto
    • 1
    • 7
  • Guy Brochier
    • 5
    • 6
  • Xavière Lornage
    • 1
    • 2
    • 3
    • 4
  • Bruno Eymard
    • 16
  • Ana Lía Taratuto
    • 17
  • Johann Böhm
    • 1
    • 2
    • 3
    • 4
  • Hernan Gonorazky
    • 18
  • Leigh Ramos-Platt
    • 19
  • Lucy Feng
    • 10
  • Rahul Phadke
    • 10
  • Diana X. Bharucha-Goebel
    • 7
    • 20
  • Charlotte Jane Sumner
    • 21
    • 22
  • Mai Thao Bui
    • 5
    • 6
  • Emmanuelle Lacene
    • 5
    • 6
  • Maud Beuvin
    • 5
    • 6
  • Clémence Labasse
    • 5
    • 6
  • Nicolas Dondaine
    • 26
  • Raphael Schneider
    • 1
    • 2
    • 3
    • 4
    • 23
  • Julie Thompson
    • 23
  • Anne Boland
    • 24
  • Jean-François Deleuze
    • 24
  • Emma Matthews
    • 10
  • Aleksandra Nadaj Pakleza
    • 25
  • Caroline A. Sewry
    • 10
  • Valérie Biancalana
    • 1
    • 2
    • 3
    • 4
    • 26
  • Susana Quijano-Roy
    • 13
    • 14
    • 15
    • 27
  • Francesco Muntoni
    • 10
  • Michel Fardeau
    • 5
    • 6
  • Carsten G. Bönnemann
    • 7
  • Jocelyn Laporte
    • 1
    • 2
    • 3
    • 4
  1. 1.Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
  2. 2.INSERM U964IllkirchFrance
  3. 3.CNRS, UMR7104IllkirchFrance
  4. 4.Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgIllkirchFrance
  5. 5.Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in MyologyGH Pitié-SalpêtrièreParisFrance
  6. 6.Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-SalpêtrièreAssistance Publique-Hôpitaux de ParisParisFrance
  7. 7.Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaUSA
  8. 8.Department of AnesthesiaUniversitätsspital BaselBaselSwitzerland
  9. 9.Department of BiomedizinUniversitätsspital BaselBaselSwitzerland
  10. 10.Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular DiseasesUCL Great Ormond Street Institute of Child HealthLondonUK
  11. 11.Departments of Pediatrics and NeurologyCedars-Sinai Medical CenterLos AngelesUSA
  12. 12.The Board of Governors Regenerative Medicine InstituteCedars-Sinai Medical CenterLos AngelesUSA
  13. 13.Assistance Publique des Hôpitaux de Paris (AP-HP), Service de Pédiatrie, Hôpital Raymond PoincaréHôpitaux Universitaires Paris-Ile-de-France OuestGarchesFrance
  14. 14.Centre de Référence de Maladies Neuromusculaires Garches-Necker-Mondor-Hendaye (GNMH)GarchesFrance
  15. 15.Réseau National Français de la Filière Neuromusculaire (FILNEMUS)GarchesFrance
  16. 16.Centre de Référence de Pathologie Neuromusculaire Paris-EstGroupe Hospitalier Pitié-SalpêtrièreParisFrance
  17. 17.Consultant-Neuropathology DepartmentNational Pediatric Hospital J-P-Garrahan and Institute for Neurological Research-FLENIBuenos AiresArgentina
  18. 18.Division of Neurology, Department of Pediatrics, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  19. 19.Division of Neurology at Children’s Hospital of Los Angeles, Department of Pediatrics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  20. 20.Division of NeurologyChildren’s National Health SystemWashingtonUSA
  21. 21.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  22. 22.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  23. 23.Faculté de MédecineICube-UMR7357, CSTB Complex Systems and Translational BioinformaticsStrasbourgFrance
  24. 24.Centre National de Génotypage, Institut de Génomique, CEAEvryFrance
  25. 25.Centre de référence des maladies neuromusculaires Nantes/Angers, Service de NeurologieCHU AngersAngersFrance
  26. 26.Laboratoire de Diagnostic Génétique, Faculté de MédecineNouvel Hôpital CivilStrasbourgFrance
  27. 27.Université de Versailles-St Quentin, U1179 UVSQ-INSERMMontignyFrance

Personalised recommendations