Skip to main content

Advertisement

Log in

The epigenome in Alzheimer’s disease: current state and approaches for a new path to gene discovery and understanding disease mechanism

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The advent of new technologies and analytic approaches is beginning to provide an unprecedented look at features of the human genome that affect RNA expression. These “epigenomic” features are found in a number of different forms: they include DNA methylation, covalent modifications of histone proteins and non-coding RNAs. Some of these features have now been implicated in Alzheimer’s disease (AD). Here, we focus on recent studies that have identified robust observations relating to DNA methylation and chromatin in human brain tissue; these findings will ground the next generation of studies and provide a model for the design of such studies. Stemming from observations that compounds with histone deacetylase activity may be beneficial in AD, epigenome-wide studies in cortical samples from large numbers of human subjects have now shown that AD-associated epigenomic changes are reproducible, are not driven by genetic risk factors, and are widespread at specific locations in the genome. A fundamental question of whether such changes are causal remains to be demonstrated, but it is already clear that well-powered investigations of the human epigenome in the target organ of a neurodegenerative disease are feasible, are implicating new areas of the genome in the disease, and will be an important tool for future studies. We are now at an inflection point: as genome-wide association studies of genetic variants come to an end, a new generation of studies exploring the epigenome will provide an important new layer of information with which to enrich our understanding of AD pathogenesis and to possibly guide development of new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adwan L, Zawia NH (2013) Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 139:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA (2012) Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol 72:599–609

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bennett DA, Wilson RS, Arvanitakis Z, Boyle PA, de Toledo-Morrell L, Schneider JA (2013) Selected findings from the Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 33(Suppl 1):S397–S403

    PubMed  PubMed Central  Google Scholar 

  5. Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C, De Jager PL (2015) Epigenomics of Alzheimer’s disease. Transl Res 165:200–220

    Article  CAS  PubMed  Google Scholar 

  6. Birney E, Smith GD, Greally JM (2016) Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genet 12:e1006105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Booth LN, Brunet A (2016) The aging epigenome. Mol Cell 62:728–744

    Article  CAS  PubMed  Google Scholar 

  8. Buenrostro, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1212–1218

    Article  Google Scholar 

  9. Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20:282–289

    Article  CAS  PubMed  Google Scholar 

  10. Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci USA 107:8824–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chibnik LB, Yu L, Eaton ML, Srivastava G, Schneider JA, Kellis M, Bennett DA, De Jager PL (2015) Alzheimer’s loci: epigenetic associations and interaction with genetic factors. Ann Clin Transl Neurol 2:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cruickshanks HA, McBryan T, Nelson DM, Vanderkraats ND, Shah PP, van Tuyn J, Rai TS, Brock C, Donahue G, Dunican DS, Drotar ME, Meehan RR, Edwards JR, Berger SL, Adams PD (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F (2011) Evaluation of the Infinium Methylation 450 K technology. Epigenomics 3:771–784

    Article  CAS  PubMed  Google Scholar 

  14. De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe C, Tang A, Raj T, Replogle J, Brodeur W, Gabriel S, Chai HS, Younkin C, Younkin SG, Zou F, Szyf M, Epstein CB, Schneider JA, Bernstein BE, Meissner A, Ertekin-Taner N, Chibnik LB, Kellis M, Mill J, Bennett DA (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17:1156–1163

    Article  PubMed  PubMed Central  Google Scholar 

  15. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Article  PubMed  Google Scholar 

  16. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  17. Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9:215–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan RJ, Shishkin AA, Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De Jager PL, Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–343

    Article  CAS  PubMed  Google Scholar 

  19. Foscher A (2014) Targeting histone-modifications in Alzheimer’s disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology 80:95–102

    Article  Google Scholar 

  20. Frost B, Hemberg M, Lewis J, Feany MB (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, Arepalli S, Dillman A, Rafferty IP, Troncoso J, Johnson R, Zielke HR, Ferrucci L, Longo DL, Cookson MR, Singleton AB (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 6:e1000952

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai LH, Kellis M (2015) Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518:365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guintivano J, Aryee MJ, Kaminsky ZA (2013) A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 8:290–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD (2014) Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 80:3–17

    Article  CAS  PubMed  Google Scholar 

  25. Hannon E, Lunnon K, Schalkwyk L, Mill J (2015) Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10:1024–1032

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  27. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  29. Horvath S (2015) The cerebellum ages slowly according to the epigenetic clock. Aging 7:294–306

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  31. Klein HU, De Jager PL (2016) Uncovering the role of the methylome in dementia and neurodegeneration. Trends Mol Med 22:687–700

  32. Kriaucionis S, Heintz N (2009) The nuclear DNA base, 5-hydroxymethylcytosine is present in brain and enriched in Purkinje neurons. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lambert JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:42–56

    Article  CAS  PubMed  Google Scholar 

  35. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DL, Rutten BP (2015) The epigenetics of aging and neurodegeneration. Prog Neurobiol 131:21–64

    Article  CAS  PubMed  Google Scholar 

  36. Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, Papadopoulou AS, Achsel T, Ayoubi T, Soreq H, Verhaagen J, Swaab DF, Aerts S, De Strooper B (2013) Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 5:1613–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging (Albany NY) 12:1198–1211

    Article  Google Scholar 

  38. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekström TJ, Feinberg AP (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu L, Cheung TH, Charville GW, Hurgo BM, Leavitt T, Shih J, Brunet A, Rando TA (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4:189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799:694–701

    Article  Google Scholar 

  42. Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, Troakes C, Al-Sarraj S, Burrage J, Macdonald R, Condliffe D, Harries LW, Katsel P, Haroutunian V, Kaminsky Z, Joachim C, Powell J, Lovestone S, Bennett DA, Schalkwyk LC, Mill J (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17:1164–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M, Colantuoni C, Weinberger DR, Kleinman JE, Lipska BK (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90:260–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pu M, Ni Z, Wang M, Wang X, Wood JG, Helfand SL, Yu H, Lee SS (2015) Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev 29:718–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roadmap Epigenomics Consortium et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330

    Article  Google Scholar 

  46. Satterlee JS, Beckel-Mitchener A, McAllister K, Procaccini DC, Rutter JL, Tyson FL, Chadwick LH (2015) Community resources and technologies developed through the NIH Roadmap Epigenomics Program. Methods Mol Biol 1238:27–49

    Article  PubMed  Google Scholar 

  47. Salta E, Sierksma A, Vanden Eynden E, De Strooper B (2016) miR-132 loss de-represses ITPKB and aggravates amyloid and Tau pathology in Alzheimer’s brain. EMBO Mol Med (ePub ahead of print)

  48. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Southworth LK, Owen AB, Kim SK (2009) Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet 5:e1000776

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sullivan S, Young-Pearse TL (2015) Induced pluripotent stem cells as a discovery tool for Alzheimer’s disease. Brain Res (ePub ahead of print)

  51. Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL, Haroutunian V, Sharp AJ (2016) Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med 8:5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang J, Yu L, Gaiteri C, Srivastava GP, Chibnik LB, Leurgans SE, Schneider JA, Meissner A, De Jager PL, Bennett DA (2015) Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. Int J Biochem Cell Biol 67:58–64

    Article  CAS  PubMed  Google Scholar 

  53. You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu L, Chibnik LB, Yang J, McCabe C, Xu J, Schneider JA, De Jager PL, Bennett DA (2016) Methylation profiles in peripheral blood CD4+ lymphocytes versus brain: The relation to Alzheimer’s disease pathology. Alzheimers Dement (ePub ahead of print)

  55. Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla RD, Reddy P, Esteban CR, Tang F, Liu GH, Belmonte JC (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou VW et al (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip L. De Jager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, HU., Bennett, D.A. & De Jager, P.L. The epigenome in Alzheimer’s disease: current state and approaches for a new path to gene discovery and understanding disease mechanism. Acta Neuropathol 132, 503–514 (2016). https://doi.org/10.1007/s00401-016-1612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1612-7

Keywords

Navigation