Advertisement

Acta Neuropathologica

, Volume 131, Issue 3, pp 465–480 | Cite as

Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis

  • Hajer El Oussini
  • Hanna Bayer
  • Jelena Scekic-Zahirovic
  • Pauline Vercruysse
  • Jérôme Sinniger
  • Sylvie Dirrig-Grosch
  • Stéphane Dieterlé
  • Andoni Echaniz-Laguna
  • Yves Larmet
  • Kathrin Müller
  • Jochen H. Weishaupt
  • Dietmar R. Thal
  • Wouter van Rheenen
  • Kristel van Eijk
  • Roland Lawson
  • Laurent Monassier
  • Luc Maroteaux
  • Anne Roumier
  • Philip C. Wong
  • Leonard H. van den Berg
  • Albert C. Ludolph
  • Jan H. Veldink
  • Anke Witting
  • Luc Dupuis
Original Paper

Abstract

Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear phagocytes, most likely microglia, and slows disease progression in ALS. Targeting this receptor might be therapeutically useful.

Keywords

Amyotrophic lateral sclerosis Motor neuron Serotonin Microglia SOD1 

Notes

Acknowledgments

We thank Dr David Hicks (INCI, Strasbourg) for careful english editing. We acknowledge the technical help of Marie Jo Ruivo, Annie Picchinenna and Sébastien Freismuth. This work was supported by Fondation “Recherche sur le Cerveau” (call 2015, to LD and LMa), and the Fondation Thierry Latran (SpastALS, to LD). Research leading to these results has received funding from the European Community’s Health Seventh Framework Programme (FP7/2007–2013; EuroMOTOR). This study was supported by The Netherlands Organization for Health Research and Development (Vici Scheme (to LvdB), under the frame of E-Rare-2 (to JHV) and JPND (STRENGTH, to LvdB and JHV), the ERA Net for Research on Rare Diseases (PYRAMID). This study was supported by the ALS Foundation Netherlands and the MND association (UK) (Project MinE, http://www.projectmine.com). Work in our laboratories is supported by ALS Association Investigator Initiated Award (Grants 2235, 3209 and 8075; to LD); the Frick Foundation (award 2013 to LD); Association Française contre les Myopathies (Grant #18280; to LD); Virtual Helmholtz Institute “RNA dysmetabolism in ALS and FTD” (WP2, to LD, AW and ACL). This study was supported by the ALS Foundation Netherlands and the MND association (UK) (Project MinE, http://www.projectmine.com). LMa is supported by the Fondation pour la Recherche Médicale “Equipe FRM DEQ 2014039529”, the French Ministry of Research (Agence Nationale pour la Recherche) ANR-12-BSV1-0015-01 and the Investissements d’Avenir program managed by the ANR under reference ANR-11-IDEX-0004-02.

Supplementary material

401_2016_1534_MOESM1_ESM.pdf (4.5 mb)
Supplementary material 1 (PDF 4596 kb)

References

  1. 1.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543. doi: 10.1038/nn2014 CrossRefPubMedGoogle Scholar
  2. 2.
    Banas SM, Doly S, Boutourlinsky K, Diaz SL, Belmer A, Callebert J, Collet C, Launay JM, Maroteaux L (2011) Deconstructing antiobesity compound action: requirement of serotonin 5-HT2B receptors for dexfenfluramine anorectic effects. Neuropsychopharmacology 36:423–433. doi: 10.1038/npp.2010.173 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J, Maroteaux L, Diaz S, Belmer A, Hodgkinson CA, Dell’osso L, Suvisaari J, Coccaro E, Rose RJ, Peltonen L, Virkkunen M, Goldman D (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468:1061–1066. doi: 10.1038/nature09629 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59CrossRefPubMedGoogle Scholar
  5. 5.
    Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392CrossRefPubMedGoogle Scholar
  6. 6.
    Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefPubMedGoogle Scholar
  7. 7.
    Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Greco DJ, Wu PM, Doykan CE, Kiner O, Lawson RJ, Frosch MP, Pochet N, Fatimy RE, Krichevsky AM, Gygi SP, Lassmann H, Berry J, Cudkowicz ME, Weiner HL (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77:75–99. doi: 10.1002/ana.24304 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. doi: 10.1038/nn.3599 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122:3063–3087. doi: 10.1172/JCI62636 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH, Pestronk A, Goate AM, Miller TM, Cruchaga C, Harms MB (2014) TREM2 variant p. R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–453. doi: 10.1001/jamaneurol.2013.6237 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, Yuede CM, Galimberti D, Olivecrona G, Klein RS, Cross AH, Otero K, Piccio L (2015) TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 129:429–447. doi: 10.1007/s00401-015-1388-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4:385–401. doi: 10.1016/j.celrep.2013.06.018 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    d’Errico P, Boido M, Piras A, Valsecchi V, De Amicis E, Locatelli D, Capra S, Vagni F, Vercelli A, Battaglia G (2013) Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice. PLoS One 8:e82654. doi: 10.1371/journal.pone.0082654 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    de las Casas-Engel M, Dominguez-Soto A, Sierra-Filardi E, Bragado R, Nieto C, Puig-Kroger A, Samaniego R, Loza M, Corcuera MT, Gomez-Aguado F, Bustos M, Sanchez-Mateos P, Corbi AL (2013) Serotonin skews human macrophage polarization through HTR2B and HTR7. J Immunol 190:2301–2310Google Scholar
  15. 15.
    Dentel C, Palamiuc L, Henriques A, Lannes B, Spreux-Varoquaux O, Gutknecht L, Rene F, Echaniz-Laguna A, Gonzalez de Aguilar JL, Lesch KP, Meininger V, Loeffler JP, Dupuis L (2013) Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity. Brain 136:483–493. doi: 10.1093/brain/aws274 CrossRefPubMedGoogle Scholar
  16. 16.
    Diaz SL, Doly S, Narboux-Neme N, Fernandez S, Mazot P, Banas SM, Boutourlinsky K, Moutkine I, Belmer A, Roumier A, Maroteaux L (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17:154–163. doi: 10.1038/mp.2011.159 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM, Maroteaux L (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28:2933–2940. doi: 10.1523/JNEUROSCI.5723-07.2008 CrossRefPubMedGoogle Scholar
  18. 18.
    Dupuis L, de Tapia M, Rene F, Lutz-Bucher B, Gordon JW, Mercken L, Pradier L, Loeffler JP (2000) Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons. Neurobiol Dis 7:274–285CrossRefPubMedGoogle Scholar
  19. 19.
    Dupuis L, Fergani A, Braunstein KE, Eschbach J, Holl N, Rene F, Gonzalez De Aguilar JL, Zoerner B, Schwalenstocker B, Ludolph AC, Loeffler JP (2009) Mice with a mutation in the dynein heavy chain 1 gene display sensory neuropathy but lack motor neuron disease. Exp Neurol 215:146–152CrossRefPubMedGoogle Scholar
  20. 20.
    Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci 101:11159–11164PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82. doi: 10.1016/S1474-4422(10)70224-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Dupuis L, Spreux-Varoquaux O, Bensimon G, Jullien P, Lacomblez L, Salachas F, Bruneteau G, Pradat PF, Loeffler JP, Meininger V (2010) Platelet serotonin level predicts survival in amyotrophic lateral sclerosis. PLoS One 5:e13346. doi: 10.1371/journal.pone.0013346 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    ElAli A, Rivest S (2015) Microglia in Alzheimer’s disease: a multifaceted relationship. Brain Behav Immun. doi: 10.1016/j.bbi.2015.07.021 PubMedGoogle Scholar
  24. 24.
    Endo F, Komine O, Fujimori-Tonou N, Katsuno M, Jin S, Watanabe S, Sobue G, Dezawa M, Wyss-Coray T, Yamanaka K (2015) Astrocyte-derived TGF-beta1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep 11:592–604. doi: 10.1016/j.celrep.2015.03.053 CrossRefPubMedGoogle Scholar
  25. 25.
    Fendrick SE, Xue QS, Streit WJ (2007) Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene. J Neuroinflammation 4:9. doi: 10.1186/1742-2094-4-9 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK, Foust KD, Godbout JP, Popovich PG, Guttridge DC, Kaspar BK (2014) Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023. doi: 10.1016/j.neuron.2014.01.013 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N, Dursun B, Bilgic B, Hanagasi H, Gurvit H, Emre M, Singleton A, Hardy J (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78–84. doi: 10.1001/jamaneurol.2013.579 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Guilliams M, van de Laar L (2015) A Hitchhiker’s guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front Immunol 6:406. doi: 10.3389/fimmu.2015.00406 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Harrison M, O’Brien A, Adams L, Cowin G, Ruitenberg MJ, Sengul G, Watson C (2013) Vertebral landmarks for the identification of spinal cord segments in the mouse. Neuroimage 68:22–29. doi: 10.1016/j.neuroimage.2012.11.048 CrossRefPubMedGoogle Scholar
  30. 30.
    Heiman-Patterson TD, Sher RB, Blankenhorn EA, Alexander G, Deitch JS, Kunst CB, Maragakis N, Cox G (2011) Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers. Amyotroph Lateral Scler 12:79–86. doi: 10.3109/17482968.2010.550626 CrossRefPubMedGoogle Scholar
  31. 31.
    Hickman SE, El Khoury J (2010) Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol Disord: Drug Targets 9:168–173CrossRefGoogle Scholar
  32. 32.
    Hickman SE, El Khoury J (2013) The neuroimmune system in Alzheimer’s disease: the glass is half full. J Alzheimers Dis 33(Suppl 1):S295–S302. doi: 10.3233/JAD-2012-129027 PubMedGoogle Scholar
  33. 33.
    Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. doi: 10.1038/nn.3554 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Hoeffel G, Ginhoux F (2015) Ontogeny of tissue-resident macrophages. Front Immunol 6:486. doi: 10.3389/fimmu.2015.00486 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Huisman MH, de Jong SW, van Doormaal PT, Weinreich SS, Schelhaas HJ, van der Kooi AJ, de Visser M, Veldink JH, van den Berg LH (2011) Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J Neurol Neurosurg Psychiatry 82:1165–1170. doi: 10.1136/jnnp.2011.244939 CrossRefPubMedGoogle Scholar
  36. 36.
    Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart valve disease–it was meant 2B. Pharmacol Ther 132:146–157. doi: 10.1016/j.pharmthera.2011.03.008 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT (2015) TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med 212:287–295. doi: 10.1084/jem.20142322 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Jokic N, Gonzalez de Aguilar JL, Dimou L, Lin S, Fergani A, Ruegg MA, Schwab ME, Dupuis L, Loeffler JP (2006) The neurite outgrowth inhibitor Nogo-A promotes denervation in an amyotrophic lateral sclerosis model. EMBO Rep 7:1162–1167PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116. doi: 10.1056/NEJMoa1211103 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi: 10.1152/physrev.00011.2010 CrossRefPubMedGoogle Scholar
  41. 41.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955. doi: 10.1016/S0140-6736(10)61156-7 CrossRefPubMedGoogle Scholar
  42. 42.
    Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, Tahirovic S, Lleo A, Alcolea D, Fortea J, Willem M, Lammich S, Molinuevo JL, Sanchez-Valle R, Antonell A, Ramirez A, Heneka MT, Sleegers K, van der Zee J, Martin JJ, Engelborghs S, Demirtas-Tatlidede A, Zetterberg H, Van Broeckhoven C, Gurvit H, Wyss-Coray T, Hardy J, Colonna M, Haass C (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra286. doi: 10.1126/scitranslmed.3009093
  43. 43.
    Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370:114–123. doi: 10.1007/s00210-004-0951-4 CrossRefPubMedGoogle Scholar
  44. 44.
    Kolodziejczak M, Bechade C, Gervasi N, Irinopoulou T, Banas SM, Cordier C, Rebsam A, Roumier A, Maroteaux L (2015) Serotonin modulates developmental microglia via 5-HT receptors: potential implication during synaptic refinement of retinogeniculate projections. ACS Chem Neurosci. doi: 10.1021/cn5003489 PubMedGoogle Scholar
  45. 45.
    Koschnitzky JE, Quinlan KA, Lukas TJ, Kajtaz E, Kocevar EJ, Mayers WF, Siddique T, Heckman CJ (2014) Effect of fluoxetine on disease progression in a mouse model of ALS. J Neurophysiol 111:2164–2176. doi: 10.1152/jn.00425.2013 PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Kunis G, Baruch K, Miller O, Schwartz M (2015) Immunization with a myelin-derived antigen activates the brain’s choroid plexus for recruitment of immunoregulatory cells to the CNS and attenuates disease progression in a mouse model of ALS. J Neurosci 35:6381–6393. doi: 10.1523/JNEUROSCI.3644-14.2015 CrossRefPubMedGoogle Scholar
  47. 47.
    Laird FM, Farah MH, Ackerley S, Hoke A, Maragakis N, Rothstein JD, Griffin J, Price DL, Martin LJ, Wong PC (2008) Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J Neurosci 28:1997–2005. doi: 10.1523/JNEUROSCI.4231-07.2008 CrossRefPubMedGoogle Scholar
  48. 48.
    Lattante S, Ciura S, Rouleau GA, Kabashi E (2015) Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet. doi: 10.1016/j.tig.2015.03.005 PubMedGoogle Scholar
  49. 49.
    Launay JM, Herve P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8:1129–1135. doi: 10.1038/nm764 CrossRefPubMedGoogle Scholar
  50. 50.
    Lewis CA, Solomon JN, Rossi FM, Krieger C (2009) Bone marrow-derived cells in the central nervous system of a mouse model of amyotrophic lateral sclerosis are associated with blood vessels and express CX(3)CR1. Glia 57:1410–1419. doi: 10.1002/glia.20859 CrossRefPubMedGoogle Scholar
  51. 51.
    Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152. doi: 10.1016/j.expneurol.2012.06.011 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604. doi: 10.1016/j.bcp.2014.01.008 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Nebigil CG, Choi DS, Dierich A, Hickel P, Le Meur M, Messaddeq N, Launay JM, Maroteaux L (2000) Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci 97:9508–9513PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Nebigil CG, Etienne N, Messaddeq N, Maroteaux L (2003) Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling. FASEB J 17:1373–1375. doi: 10.1096/fj.02-1122fje PubMedGoogle Scholar
  55. 55.
    Nebigil CG, Hickel P, Messaddeq N, Vonesch JL, Douchet MP, Monassier L, Gyorgy K, Matz R, Andriantsitohaina R, Manivet P, Launay JM, Maroteaux L (2001) Ablation of serotonin 5-HT(2B) receptors in mice leads to abnormal cardiac structure and function. Circulation 103:2973–2979CrossRefPubMedGoogle Scholar
  56. 56.
    Nebigil CG, Jaffre F, Messaddeq N, Hickel P, Monassier L, Launay JM, Maroteaux L (2003) Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 107:3223–3229. doi: 10.1161/01.CIR.0000074224.57016.01 CrossRefPubMedGoogle Scholar
  57. 57.
    Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263. doi: 10.1016/S1474-4422(11)70015-1 CrossRefPubMedGoogle Scholar
  58. 58.
    Philips T, Rothstein JD (2014) Glial cells in amyotrophic lateral sclerosis. Exp Neurol 262(Pt B):111–120. doi: 10.1016/j.expneurol.2014.05.015
  59. 59.
    Pitychoutis PM, Belmer A, Moutkine I, Adrien J, Maroteaux L (2015) Mice lacking the serotonin Htr receptor gene present an antipsychotic-sensitive schizophrenic-like phenotype. Neuropsychopharmacology. doi: 10.1038/npp.2015.126 PubMedGoogle Scholar
  60. 60.
    Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S, Colonna M (2015) TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 125:2161–2170. doi: 10.1172/JCI77983 PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  62. 62.
    Streit WJ, Braak H, Xue QS, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485. doi: 10.1007/s00401-009-0556-6 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142. doi: 10.1186/s40478-014-0142-6 PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Strong MJ, Yang W (2011) The frontotemporal syndromes of ALS. Clinicopathological correlates. J Mol Neurosci 45:648–655. doi: 10.1007/s12031-011-9609-0 CrossRefPubMedGoogle Scholar
  65. 65.
    Turner BJ, Lopes EC, Cheema SS (2003) The serotonin precursor 5-hydroxytryptophan delays neuromuscular disease in murine familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 4(3):171–176. doi: 10.1080/14660820310009389 CrossRefPubMedGoogle Scholar
  66. 66.
    Turner MR, Rabiner EA, Al-Chalabi A, Shaw CE, Brooks DJ, Leigh PN, Andersen PM (2007) Cortical 5-HT1A receptor binding in patients with homozygous D90A SOD1 vs sporadic ALS. Neurology 68:1233–1235. doi: 10.1212/01.wnl.0000259083.31837.64 CrossRefPubMedGoogle Scholar
  67. 67.
    Turner MR, Rabiner EA, Hammers A, Al-Chalabi A, Grasby PM, Shaw CE, Brooks DJ, Leigh PN (2005) [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain 128:896–905. doi: 10.1093/brain/awh428 CrossRefPubMedGoogle Scholar
  68. 68.
    van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, Lemmens R, Schelhaas HJ, Groen EJ, Huisman MH, van der Kooi AJ, de Visser M, Dahlberg C, Estrada K, Rivadeneira F, Hofman A, Zwarts MJ, van Doormaal PT, Rujescu D, Strengman E, Giegling I, Muglia P, Tomik B, Slowik A, Uitterlinden AG, Hendrich C, Waibel S, Meyer T, Ludolph AC, Glass JD, Purcell S, Cichon S, Nothen MM, Wichmann HE, Schreiber S, Vermeulen SH, Kiemeney LA, Wokke JH, Cronin S, McLaughlin RL, Hardiman O, Fumoto K, Pasterkamp RJ, Meininger V, Melki J, Leigh PN, Shaw CE, Landers JE, Al-Chalabi A, Brown RH Jr, Robberecht W, Andersen PM, Ophoff RA, van den Berg LH (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41:1083–1087. doi: 10.1038/ng.442 CrossRefPubMedGoogle Scholar
  69. 69.
    Vandesompele J, De Preter K, Pattyn C, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11. doi: 10.1186/Gb-2002-3-7-Research0034 CrossRefGoogle Scholar
  70. 70.
    Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15:84–97. doi: 10.1038/nrn3638 CrossRefPubMedGoogle Scholar
  71. 71.
    Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, Holtzman DM, Cirrito JR, Colonna M (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071. doi: 10.1016/j.cell.2015.01.049 CrossRefPubMedGoogle Scholar
  72. 72.
    Wiesner D, Sinniger J, Henriques A, Dieterle S, Muller H, Rasche V, Ferger B, Dirrig-Grosch S, Soylu-Kucharz R, Petersen A, Walther P, Linkus B, Kassubek J, Wong PC, Ludolph AC, Dupuis L (2014) Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein mediated neurodegeneration. Hum Mol Genet 15:2228–2240. doi: 10.1093/hmg/ddu741 Google Scholar
  73. 73.
    Witting A, Moller T (2011) Microglia cell culture: a primer for the novice. Methods Mol Biol 758:49–66. doi: 10.1007/978-1-61779-170-3_4 CrossRefPubMedGoogle Scholar
  74. 74.
    Xue QS, Streit WJ (2011) Microglial pathology in Down syndrome. Acta Neuropathol 122:455–466. doi: 10.1007/s00401-011-0864-5 CrossRefPubMedGoogle Scholar
  75. 75.
    Zhao W, Beers DR, Appel SH (2013) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol 8:888–899. doi: 10.1007/s11481-013-9489-x PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hajer El Oussini
    • 1
    • 2
  • Hanna Bayer
    • 3
  • Jelena Scekic-Zahirovic
    • 1
    • 2
  • Pauline Vercruysse
    • 1
    • 2
    • 3
  • Jérôme Sinniger
    • 1
    • 2
  • Sylvie Dirrig-Grosch
    • 1
    • 2
  • Stéphane Dieterlé
    • 1
    • 2
  • Andoni Echaniz-Laguna
    • 1
    • 2
    • 4
  • Yves Larmet
    • 1
    • 2
  • Kathrin Müller
    • 3
  • Jochen H. Weishaupt
    • 3
  • Dietmar R. Thal
    • 5
    • 6
  • Wouter van Rheenen
    • 7
  • Kristel van Eijk
    • 7
  • Roland Lawson
    • 2
    • 4
  • Laurent Monassier
    • 2
    • 4
  • Luc Maroteaux
    • 8
    • 9
    • 10
  • Anne Roumier
    • 8
    • 9
    • 10
  • Philip C. Wong
    • 11
  • Leonard H. van den Berg
    • 7
  • Albert C. Ludolph
    • 3
  • Jan H. Veldink
    • 7
  • Anke Witting
    • 3
  • Luc Dupuis
    • 1
    • 2
  1. 1.INSERM UMR-S1118, Faculté de MédecineStrasbourg CedexFrance
  2. 2.Université de Strasbourg, Fédération de Médecine TranslationnelleStrasbourgFrance
  3. 3.Department of NeurologyUniversity of UlmUlmGermany
  4. 4.Neurology DepartmentHopitaux Universitaires de StrasbourgStrasbourgFrance
  5. 5.Laboratory of NeuropathologyInstitute of Pathology, University of UlmUlmGermany
  6. 6.Laboratory of Neuropathology, Department of NeuroscienceKU-LeuvenLeuvenBelgium
  7. 7.Department of NeurologyBrain Center Rudolf Magnus, University Medical Center UtrechtUtrechtThe Netherlands
  8. 8.Inserm, UMR-S839ParisFrance
  9. 9.Sorbonne Universités, UPMC University Paris 06, UMR-S839ParisFrance
  10. 10.Institut du Fer à MoulinParisFrance
  11. 11.Division of Neuropathology, Department of Pathology and NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations