Advertisement

Acta Neuropathologica

, Volume 130, Issue 5, pp 731–750 | Cite as

PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk

  • Svetlana M. Stamatovic
  • Nikola Sladojevic
  • Richard F. Keep
  • Anuska V. Andjelkovic
Original Paper

Abstract

Impairment of brain endothelial barrier integrity is critical for cerebral cavernous malformation (CCM) lesion development. The current study investigates changes in tight junction (TJ) complex organization when PDCD10 (CCM3) is mutated/depleted in human brain endothelial cells. Analysis of lesions with CCM3 mutation and brain endothelial cells transfected with CCM3 siRNA (CCM3-knockdown) showed little or no increase in TJ transmembrane and scaffolding proteins mRNA expression, but proteins levels were generally decreased. CCM3-knockdown cells had a redistribution of claudin-5 and occludin from the membrane to the cytosol with no alterations in protein turnover but with diminished protein–protein interactions with ZO-1 and ZO-1 interaction with the actin cytoskeleton. The most profound effect of CCM3 mutation/depletion was on an actin-binding protein, cortactin. CCM3 depletion caused cortactin Ser-phosphorylation, dissociation from ZO-1 and actin, redistribution to the cytosol and degradation. This affected cortical actin ring organization, TJ complex stability and consequently barrier integrity, with constant hyperpermeability to inulin. A potential link between CCM3 depletion and altered cortactin was tonic activation of MAP kinase ERK1/2. ERK1/2 inhibition increased cortactin expression and incorporation into the TJ complex and improved barrier integrity. This study highlights the potential role of CCM3 in regulating TJ complex organization and brain endothelial barrier permeability.

Keywords

CCM3 Tight junction Cortactin Brain endothelial barrier Permeability 

Notes

Acknowledgments

We thank Adrienne Chiu for excellent technical assistance in tissue array analysis. Tissue for this study was provided by Angioma Alliance, St Joseph’s Hospital and Medical Center’s Human Specimen Procurement Service. The confocal microscopy and Laser Capture Microdissection System work was performed in the Microscopy and Image-analysis Laboratory (MIL) at the University of Michigan, Department of Cell & Developmental Biology. Fluorescence microscopy and histology slide scanning was done at Department of pathology Core Flow Cytometry Laboratory and Slide Scanning Services. This work was supported by Public Health Service Grant NS075757 from the National Institute of Neurological Disorders (A.V.A).

Supplementary material

401_2015_1479_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 55 kb)
401_2015_1479_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)
401_2015_1479_MOESM3_ESM.tif (14.2 mb)
Supplementary material 3 (TIFF 14540 kb)
401_2015_1479_MOESM4_ESM.tif (6.5 mb)
Supplementary material 4 (TIFF 6654 kb)

References

  1. 1.
    Afridi S, Goadsby PJ (2003) New onset migraine with a brain stem cavernous angioma. J Neurol Neurosurg Psychiatry 74:680–682PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Al-Shahi Salman R (2012) The outlook for adults with epileptic seizure(s) associated with cerebral cavernous malformations or arteriovenous malformations. Epilepsia 53(Suppl 4):34–42. doi: 10.1111/j.1528-1167.2012.03611.x CrossRefPubMedGoogle Scholar
  3. 3.
    Awad IA (2012) Cavernous malformations. J Neurosurg 116:119–120. doi: 10.3171/2011.6.JNS111052 (discussion 121)
  4. 4.
    Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285:11760–11764. doi: 10.1074/jbc.C109.097220 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Burkhardt JK, Schmidt D, Schoenauer R, Brokopp C, Agarkova I, Bozinov O, Bertalanffy H, Hoerstrup SP (2010) Upregulation of transmembrane endothelial junction proteins in human cerebral cavernous malformations. Neurosurg Focus 29:E3. doi: 10.3171/2010.6.FOCUS10125 CrossRefPubMedGoogle Scholar
  6. 6.
    Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D (2001) Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 71:188–192PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Cosen-Binker LI, Kapus A (2006) Cortactin: the gray eminence of the cytoskeleton. Physiology 21:352–361. doi: 10.1152/physiol.00012.2006 CrossRefPubMedGoogle Scholar
  8. 8.
    de Champfleur NM, Langlois C, Ankenbrandt WJ, Le Bars E, Leroy MA, Duffau H, Bonafe A, Jaffe J, Awad IA, Labauge P (2011) Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery 68:641–647. doi: 10.1227/NEU.0b013e31820773cf (discussion 647–648)
  9. 9.
    Dibble CF, Horst JA, Malone MH, Park K, Temple B, Cheeseman H, Barbaro JR, Johnson GL, Bencharit S (2010) Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS One 5:e11740. doi: 10.1371/journal.pone.0011740 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA (2015) CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation. J Cell Biol 208:987–1001. doi: 10.1083/jcb.201407129 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Fanning AS, Anderson JM (2009) Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 1165:113–120. doi: 10.1111/j.1749-6632.2009.04440.x PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Fauth C, Rostasy K, Rath M, Gizewski E, Lederer AG, Sure U, Zschocke J, Felbor U (2015) Highly variable intrafamilial manifestations of a CCM3 mutation ranging from acute childhood cerebral haemorrhage to late-onset meningiomas. Clin Neurol Neurosurg 128:41–43. doi: 10.1016/j.clineuro.2014.10.023 CrossRefPubMedGoogle Scholar
  13. 13.
    Flemming KD, Brown RD, Link MJ (2015) Seasonal variation in hemorrhage and focal neurologic deficit due to intracerebral cavernous malformations. J Clin Neurosci. doi: 10.1016/j.jocn.2015.01.007 Google Scholar
  14. 14.
    Frischer JM, Pipp I, Stavrou I, Trattnig S, Hainfellner JA, Knosp E (2008) Cerebral cavernous malformations: congruency of histopathological features with the current clinical definition. J Neurol Neurosurg Psychiatry 79:783–788. doi: 10.1136/jnnp.2007.132316 CrossRefPubMedGoogle Scholar
  15. 15.
    Garcia-Ponce A, Citalan-Madrid AF, Velazquez-Avila M, Vargas-Robles H, Schnoor M (2015) The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 113:20–36. doi: 10.1160/TH14-04-0298 CrossRefPubMedGoogle Scholar
  16. 16.
    Gault J, Sarin H, Awadallah NA, Shenkar R, Awad IA (2004) Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. Neurosurgery 55:1–16 (discussion 16–17) Google Scholar
  17. 17.
    Glading A, Han J, Stockton RA, Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179:247–254. doi: 10.1083/jcb.200705175 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Han SP, Gambin Y, Gomez GA, Verma S, Giles N, Michael M, Wu SK, Guo Z, Johnston W, Sierecki E et al (2014) Cortactin scaffolds Arp2/3 and WAVE2 at the epithelial zonula adherens. J Biol Chem 289:7764–7775. doi: 10.1074/jbc.M113.544478 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3:ra26 doi: 10.1126/scisignal.2000722
  20. 20.
    Helwani FM, Kovacs EM, Paterson AD, Verma S, Ali RG, Fanning AS, Weed SA, Yap AS (2004) Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J Cell Biol 164:899–910. doi: 10.1083/jcb.200309034 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, Wu CC (2007) Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 6:4343–4355. doi: 10.1021/pr0704276 CrossRefPubMedGoogle Scholar
  22. 22.
    Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148. doi: 10.1016/j.biocel.2013.11.021 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jakimovski D, Schneider H, Frei K, Kennes LN, Bertalanffy H (2014) Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. J Neurosurg 121:613–620. doi: 10.3171/2014.6.JNS132775 CrossRefPubMedGoogle Scholar
  24. 24.
    Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec 296:378–381. doi: 10.1002/ar.22641 CrossRefGoogle Scholar
  25. 25.
    Katsube T, Takahisa M, Ueda R, Hashimoto N, Kobayashi M, Togashi S (1998) Cortactin associates with the cell-cell junction protein ZO-1 in both Drosophila and mouse. J Biol Chem 273:29672–29677CrossRefPubMedGoogle Scholar
  26. 26.
    Kazakoff PW, McGuire TR, Hoie EB, Cano M, Iversen PL (1995) An in vitro model for endothelial permeability: assessment of monolayer integrity. In Vitro Cell Dev Biol Anim 31:846–852. doi: 10.1007/BF02634568 CrossRefPubMedGoogle Scholar
  27. 27.
    Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B, Gibson LC, Derry WB, Scott IC, Pelletier L et al (2011) Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 286:25065–25075. doi: 10.1074/jbc.M110.214486 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA (2010) Cortactin phosphorylated by ERK1/2 localizes to sites of dynamic actin regulation and is required for carcinoma lamellipodia persistence. PLoS One 5:e13847. doi: 10.1371/journal.pone.0013847 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA (2011) Revisiting the ERK/Src cortactin switch. Commun Integr Biol 4:205–207. doi: 10.4161/cib.4.2.14420 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kremerskothen J, Stolting M, Wiesner C, Korb-Pap A, van Vliet V, Linder S, Huber TB, Rottiers P, Reuzeau E, Genot E et al (2011) Zona occludens proteins modulate podosome formation and function. FASEB J 25:505–514. doi: 10.1096/fj.10-155598 CrossRefPubMedGoogle Scholar
  31. 31.
    Krisht KM, Whitehead KJ, Niazi T, Couldwell WT (2010) The pathogenetic features of cerebral cavernous malformations: a comprehensive review with therapeutic implications. Neurosurg Focus 29:E2. doi: 10.3171/2010.6.FOCUS10135 CrossRefPubMedGoogle Scholar
  32. 32.
    Labauge P, Denier C, Bergametti F, Tournier-Lasserve E (2007) Genetics of cavernous angiomas. Lancet Neurol 6:237–244. doi: 10.1016/S1474-4422(07)70053-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, Boulday G, Chapon F, Dejana E (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123:1073–1080. doi: 10.1242/jcs.059329 CrossRefPubMedGoogle Scholar
  34. 34.
    Louvi A, Chen L, Two AM, Zhang H, Min W, Gunel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci 108:3737–3742. doi: 10.1073/pnas.1012617108 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G et al (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498:492–496. doi: 10.1038/nature12207 CrossRefPubMedGoogle Scholar
  36. 36.
    Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS (2004) Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 24:5269–5280. doi: 10.1128/MCB.24.12.5269-5280.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA et al (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20:211–222. doi: 10.1093/hmg/ddq433 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    McNeil E, Capaldo CT, Macara IG (2006) Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 17:1922–1932. doi: 10.1091/mbc.E05-07-0650 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Mikati AG, Tan H, Shenkar R, Li L, Zhang L, Guo X, Larsson HB, Shi C, Liu T, Wang Y et al (2014) Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations. Stroke 45:598–601. doi: 10.1161/STROKEAHA.113.003548 PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60:121–142. doi: 10.1146/annurev.physiol.60.1.121 CrossRefPubMedGoogle Scholar
  41. 41.
    Pagenstecher A, Stahl S, Sure U, Felbor U (2009) A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 18:911–918. doi: 10.1093/hmg/ddn420 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778:646–659. doi: 10.1016/j.bbamem.2007.08.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481. doi: 10.1042/BJ20011804 PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Ren G, Crampton MS, Yap AS (2009) Cortactin: coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskelet 66:865–873. doi: 10.1002/cm.20380 CrossRefGoogle Scholar
  45. 45.
    Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277:1070–1075. doi: 10.1111/j.1742-4658.2009.07535.x CrossRefPubMedGoogle Scholar
  46. 46.
    Riant F, Bergametti F, Fournier HD, Chapon F, Michalak-Provost S, Cecillon M, Lejeune P, Hosseini H, Choe C, Orth M et al (2013) CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4:165–172. doi: 10.1159/000350042 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Satoh H, Zhong Y, Isomura H, Saitoh M, Enomoto K, Sawada N, Mori M (1996) Localization of 7H6 tight junction-associated antigen along the cell border of vascular endothelial cells correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp Cell Res 222:269–274. doi: 10.1006/excr.1996.0034 CrossRefPubMedGoogle Scholar
  48. 48.
    Schafer DA (2002) Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 14:76–81CrossRefPubMedGoogle Scholar
  49. 49.
    Schneble HM, Soumare A, Herve D, Bresson D, Guichard JP, Riant F, Tournier-Lasserve E, Tzourio C, Chabriat H, Stapf C (2012) Antithrombotic therapy and bleeding risk in a prospective cohort study of patients with cerebral cavernous malformations. Stroke 43:3196–3199. doi: 10.1161/STROKEAHA.112.668533 CrossRefPubMedGoogle Scholar
  50. 50.
    Schneider H, Errede M, Ulrich NH, Virgintino D, Frei K, Bertalanffy H (2011) Impairment of tight junctions and glucose transport in endothelial cells of human cerebral cavernous malformations. J Neuropathol Exp Neurol 70:417–429. doi: 10.1097/NEN.0b013e31821bc40e CrossRefPubMedGoogle Scholar
  51. 51.
    Schnoor M, Lai FP, Zarbock A, Klaver R, Polaschegg C, Schulte D, Weich HA, Oelkers JM, Rottner K, Vestweber D (2011) Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J Exp Med 208:1721–1735. doi: 10.1084/jem.20101920 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Schulz GB, Wieland E, Wustehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A (2015) Cerebral cavernous malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and pericytes. Stroke. doi: 10.1161/STROKEAHA.114.007512 PubMedGoogle Scholar
  53. 53.
    Shenkar R, Venkatasubramanian PN, Zhao JC, Batjer HH, Wyrwicz AM, Awad IA (2008) Advanced magnetic resonance imaging of cerebral cavernous malformations: part I. High-field imaging of excised human lesions. Neurosurgery 63:782–789. doi: 10.1227/01.NEU.0000325490.80694.A2 (discussion 789)
  54. 54.
    Sladojevic N, Stamatovic SM, Keep RF, Grailer JJ, Sarma JV, Ward PA, Andjelkovic AV (2014) Inhibition of junctional adhesion molecule-A/LFA interaction attenuates leukocyte trafficking and inflammation in brain ischemia/reperfusion injury. Neurobiol Dis 67:57–70. doi: 10.1016/j.nbd.2014.03.010 PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Sousa S, Cabanes D, Bougneres L, Lecuit M, Sansonetti P, Tran-Van-Nhieu G, Cossart P (2007) Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells. Cell Microbiol 9:2629–2643. doi: 10.1111/j.1462-5822.2007.00984.x CrossRefPubMedGoogle Scholar
  56. 56.
    Stahl S, Gaetzner S, Voss K, Brackertz B, Schleider E, Surucu O, Kunze E, Netzer C, Korenke C, Finckh U et al (2008) Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat 29:709–717. doi: 10.1002/humu.20712 CrossRefPubMedGoogle Scholar
  57. 57.
    Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192. doi: 10.2174/157015908785777210 PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV (2009) Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 284:19053–19066. doi: 10.1074/jbc.M109.000521 PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207:881–896. doi: 10.1084/jem.20091258 PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Sugden PH, McGuffin LJ, Clerk A (2013) SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 454:13–30. doi: 10.1042/BJ20130219 CrossRefPubMedGoogle Scholar
  61. 61.
    Tanriover G, Sozen B, Seker A, Kilic T, Gunel M, Demir N (2013) Ultrastructural analysis of vascular features in cerebral cavernous malformations. Clin Neurol Neurosurg 115:438–444. doi: 10.1016/j.clineuro.2012.06.023 CrossRefPubMedGoogle Scholar
  62. 62.
    Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA (2007) Src phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci 104:11933–11938. doi: 10.1073/pnas.0701077104 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Tu J, Stoodley MA, Morgan MK, Storer KP (2005) Ultrastructural characteristics of hemorrhagic, nonhemorrhagic, and recurrent cavernous malformations. J Neurosurg 103:903–909. doi: 10.3171/jns.2005.103.5.0903 CrossRefPubMedGoogle Scholar
  64. 64.
    Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165. doi: 10.1016/j.semcdb.2014.08.011 CrossRefPubMedGoogle Scholar
  65. 65.
    Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123:134–145. doi: 10.1196/annals.1420.016 CrossRefPubMedGoogle Scholar
  66. 66.
    Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U (2007) CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8:249–256. doi: 10.1007/s10048-007-0098-9 CrossRefPubMedGoogle Scholar
  67. 67.
    Wang W, Liu Y, Liao K (2011) Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol 12:49. doi: 10.1186/1471-2121-12-49 PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Waschke J, Burger S, Curry FR, Drenckhahn D, Adamson RH (2006) Activation of Rac-1 and Cdc42 stabilizes the microvascular endothelial barrier. Histochem Cell Biol 125:397–406. doi: 10.1007/s00418-005-0080-2 CrossRefPubMedGoogle Scholar
  69. 69.
    Webb BA, Jia L, Eves R, Mak AS (2007) Dissecting the functional domain requirements of cortactin in invadopodia formation. Eur J Cell Biol 86:189–206. doi: 10.1016/j.ejcb.2007.01.003 CrossRefPubMedGoogle Scholar
  70. 70.
    Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA, Parsons JT (2000) Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151:29–40PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Wisniewski JR, Mann M (2012) Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 84:2631–2637. doi: 10.1021/ac300006b CrossRefPubMedGoogle Scholar
  72. 72.
    Wong JH, Awad IA, Kim JH (2000) Ultrastructural pathological features of cerebrovascular malformations: a preliminary report. Neurosurgery 46:1454–1459CrossRefPubMedGoogle Scholar
  73. 73.
    Yadla S, Jabbour PM, Shenkar R, Shi C, Campbell PG, Awad IA (2010) Cerebral cavernous malformations as a disease of vascular permeability: from bench to bedside with caution. Neurosurg Focus 29:E4. doi: 10.3171/2010.5.FOCUS10121 CrossRefPubMedGoogle Scholar
  74. 74.
    Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362:121–131. doi: 10.1016/j.ydbio.2011.12.006 CrossRefPubMedGoogle Scholar
  75. 75.
    Zebda N, Tian Y, Tian X, Gawlak G, Higginbotham K, Reynolds AB, Birukova AA, Birukov KG (2013) Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability. J Biol Chem 288:18290–18299. doi: 10.1074/jbc.M112.432757 PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Zhao J, Wei J, Mialki R, Zou C, Mallampalli RK, Zhao Y (2012) Extracellular signal-regulated kinase (ERK) regulates cortactin ubiquitination and degradation in lung epithelial cells. J Biol Chem 287:19105–19114. doi: 10.1074/jbc.M112.339507 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Svetlana M. Stamatovic
    • 1
  • Nikola Sladojevic
    • 1
  • Richard F. Keep
    • 2
    • 3
  • Anuska V. Andjelkovic
    • 1
    • 2
  1. 1.Department of PathologyUniversity of Michigan, Medical SchoolAnn ArborUSA
  2. 2.Department of NeurosurgeryUniversity of Michigan, Medical SchoolAnn ArborUSA
  3. 3.Department of Molecular & Integrative PhysiologyUniversity of Michigan, Medical SchoolAnn ArborUSA

Personalised recommendations