Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers


Pediatric glioblastoma (pedGBM) is amongst the most common malignant brain tumors of childhood and carries a dismal prognosis. In contrast to adult GBM, few molecular prognostic markers for the pediatric counterpart have been established. We, therefore, investigated the prognostic significance of genomic and epigenetic alterations through molecular analysis of 202 pedGBM (1–18 years) with comprehensive clinical annotation. Routinely prepared formalin-fixed paraffin-embedded tumor samples were assessed for genome-wide DNA methylation profiles, with known candidate genes screened for alterations via direct sequencing or FISH. Unexpectedly, a subset of histologically diagnosed GBM (n = 40, 20 %) displayed methylation profiles similar to those of either low-grade gliomas or pleomorphic xanthoastrocytomas (PXA). These tumors showed a markedly better prognosis, with molecularly PXA-like tumors frequently harboring BRAF V600E mutations and 9p21 (CDKN2A) homozygous deletion. The remaining 162 tumors with pedGBM molecular signatures comprised four subgroups: H3.3 G34-mutant (15 %), H3.3/H3.1 K27-mutant (43 %), IDH1-mutant (6 %), and H3/IDH wild-type (wt) GBM (36 %). These subgroups were associated with specific cytogenetic aberrations, MGMT methylation patterns and clinical outcomes. Analysis of follow-up data identified a set of biomarkers feasible for use in risk stratification: pedGBM with any oncogene amplification and/or K27M mutation (n = 124) represents a particularly unfavorable group, with 3-year overall survival (OS) of 5 %, whereas tumors without these markers (n = 38) define a more favorable group (3-year OS ~70 %).Combined with the lower grade-like lesions, almost 40 % of pedGBM cases had distinct molecular features associated with a more favorable outcome. This refined prognostication method for pedGBM using a molecular risk algorithm may allow for improved therapeutic choices and better planning of clinical trial stratification for this otherwise devastating disease.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Aihara K, Mukasa A, Gotoh K et al (2014) H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro-oncology 16(1):140–146. doi:10.1093/neuonc/not144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Bady P, Sciuscio D, Diserens AC et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124(4):547–560. doi:10.1007/s00401-012-1016-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. 3.

    Bandopadhayay P, Bergthold G, London WB et al (2014) Long-term outcome of 4040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 61(7):1173–1179. doi:10.1002/pbc.24958

    Article  PubMed  Google Scholar 

  4. 4.

    Bax DA, Mackay A, Little SE et al (2010) A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13):3368–3377. doi:10.1158/1078-0432.CCR-10-0438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. 5.

    Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi:10.1016/j.cell.2013.09.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. 6.

    Broniscer A, Tatevossian RG, Sabin ND et al (2014) Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma. Neuropathol Appl Neurobiol 40(3):327–336. doi:10.1111/nan.12093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. 7.

    Buczkowicz P, Hoeman C, Rakopoulos P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5):451–456. doi:10.1038/ng.2936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. 8.

    Buttarelli FR, Massimino M, Antonelli M et al (2010) Evaluation status and prognostic significance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in pediatric high grade gliomas. Childs Nerv Syst 26(8):1051–1056. doi:10.1007/s00381-010-1191-1

    Article  PubMed  Google Scholar 

  9. 9.

    Ceppa EP, Bouffet E, Griebel R, Robinson C, Tihan T (2007) The pilomyxoid astrocytoma and its relationship to pilocytic astrocytoma: report of a case and a critical review of the entity. J Neurooncol 81(2):191–196. doi:10.1007/s11060-006-9216-z

    Article  PubMed  Google Scholar 

  10. 10.

    Cohen KJ, Pollack IF, Zhou T et al (2011) Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro-oncology 13(3):317–323. doi:10.1093/neuonc/noq191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. 11.

    Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK (2007) MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 48(4):403–407. doi:10.1002/pbc.20803

    Article  PubMed  Google Scholar 

  12. 12.

    Duffner PK, Horowitz ME, Krischer JP et al (1999) The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro-oncology 1(2):152–161

    PubMed Central  CAS  PubMed  Google Scholar 

  13. 13.

    Faury D, Nantel A, Dunn SE et al (2007) Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol: Off J Am Soc Clin Oncol 25(10):1196–1208. doi:10.1200/JCO.2006.07.8626

    Article  CAS  Google Scholar 

  14. 14.

    Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46(5):462–466. doi:10.1038/ng.2950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15.

    Frattini V, Trifonov V, Chan JM et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45(10):1141–1149. doi:10.1038/ng.2734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. 16.

    Haque T, Faury D, Albrecht S et al (2007) Gene expression profiling from formalin-fixed paraffin-embedded tumors of pediatric glioblastoma. Clin Cancer Res 13(21):6284–6292. doi:10.1158/1078-0432.CCR-07-0525

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Hovestadt V, Remke M, Kool M et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125(6):913–916. doi:10.1007/s00401-013-1126-5

    Article  PubMed Central  PubMed  Google Scholar 

  18. 18.

    Ida CM, Rodriguez FJ, Burger PC et al (2014) Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol. doi:10.1111/bpa.12217

    PubMed  Google Scholar 

  19. 19.

    Jeibmann A, Hasselblatt M, Pfister S et al (2009) From glioblastoma to gangliocytoma: an unforeseen but welcome shift in biological behavior. J Neurosurg Pediatr 4(5):475–478. doi:10.3171/2009.6.PEDS097

    Article  PubMed  Google Scholar 

  20. 20.

    Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14(10):651–661. doi:10.1038/nrc3811

    Google Scholar 

  21. 21.

    Jones C, Perryman L, Hargrave D (2012) Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 9(7):400–413. doi:10.1038/nrclinonc.2012.87

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447. doi:10.1007/s00401-012-0998-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37(5):685–698. doi:10.1097/PAS.0b013e31827f9c5e

    Article  PubMed  Google Scholar 

  24. 24.

    Koelsche C, Sahm F, Wohrer A et al (2014) BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol 24(3):221–229. doi:10.1111/bpa.12111

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Korshunov A, Sycheva R, Gorelyshev S, Golanov A (2005) Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Mod Pathol 18(9):1258–1263. doi:10.1038/modpathol.3800415

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Lee JY, Park CK, Park SH, Wang KC, Cho BK, Kim SK (2011) MGMT promoter gene methylation in pediatric glioblastoma: analysis using MS-MLPA. Childs Nerv Syst 27(11):1877–1883. doi:10.1007/s00381-011-1525-7

    Article  PubMed  Google Scholar 

  27. 27.

    Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861. doi:10.1126/science.1232245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. 28.

    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Mistry M, Zhukova N, Merico D et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol: Off J Am Soc Clin Oncol. doi:10.1200/JCO.2014.58.3922

    Google Scholar 

  30. 30.

    Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(Suppl 4):iv1–63. doi:10.1093/neuonc/nou223

    Article  PubMed  Google Scholar 

  31. 31.

    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. doi:10.1126/science.1164382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    Paugh BS, Broniscer A, Qu C et al (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol: Off J Am Soc Clin Oncol 29(30):3999–4006. doi:10.1200/JCO.2011.35.5677

    Article  CAS  Google Scholar 

  33. 33.

    Paugh BS, Qu C, Jones C et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol: Off J Am Soc Clin Oncol 28(18):3061–3068. doi:10.1200/JCO.2009.26.7252

    Article  Google Scholar 

  34. 34.

    Phillips JJ, Aranda D, Ellison DW et al (2013) PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol 23(5):565–573. doi:10.1111/bpa.12043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. 35.

    Pollack IF, Finkelstein SD, Burnham J et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61(20):7404–7407

    CAS  PubMed  Google Scholar 

  36. 36.

    Puget S, Philippe C, Bax DA et al (2012) Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7(2):e30313. doi:10.1371/journal.pone.0030313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. 37.

    Qu HQ, Jacob K, Fatet S et al (2010) Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro-oncology 12(2):153–163. doi:10.1093/neuonc/nop001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. 38.

    Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258. doi:10.1186/1471-2407-14-258

    Article  PubMed Central  PubMed  Google Scholar 

  39. 39.

    Schiffman JD, Hodgson JG, VandenBerg SR et al (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2):512–519. doi:10.1158/0008-5472.CAN-09-1851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405. doi:10.1007/s00401-011-0802-6

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. doi:10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Srivastava A, Jain A, Jha P et al (2010) MGMT gene promoter methylation in pediatric glioblastomas. Childs Nerv Syst 26(11):1613–1618. doi:10.1007/s00381-010-1214-y

    Article  PubMed  Google Scholar 

  43. 43.

    Stokland T, Liu JF, Ironside JW et al (2010) A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro-oncology 12(12):1257–1268. doi:10.1093/neuonc/noq092

    PubMed Central  PubMed  Google Scholar 

  44. 44.

    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Sturm D, Bender S, Jones DT et al (2014) Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14(2):92–107. doi:10.1038/nrc3655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. 46.

    Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. doi:10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Suri V, Das P, Pathak P et al (2009) Pediatric glioblastomas: a histopathological and molecular genetic study. Neuro-oncology 11(3):274–280. doi:10.1215/15228517-2008-092

    Article  PubMed Central  PubMed  Google Scholar 

  48. 48.

    Taylor KR, Mackay A, Truffaux N et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46(5):457–461. doi:10.1038/ng.2925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. 49.

    Weber RG, Hoischen A, Ehrler M et al (2007) Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26(7):1088–1097. doi:10.1038/sj.onc.1209851

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R (2013) Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 14(9):e370–e379. doi:10.1016/S1470-2045(13)70168-2

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Weller M, van den Bent M, Hopkins K et al (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15(9):e395–e403. doi:10.1016/S1470-2045(14)70011-7

    Article  PubMed  Google Scholar 

  52. 52.

    Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253. doi:10.1038/ng.1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. 53.

    Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5):444–450. doi:10.1038/ng.2938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. 54.

    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. doi:10.1056/NEJMoa0808710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references


For technical support and expertise we thank Andrea Wittmann and Matthias Schick, Roger Fischer and Melanie Bewerunge-Hudler from the DKFZ Genomics and Proteomics Core Facility. This work was principally supported by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883). Additional support came from the German Cancer Research Center—Heidelberg Center for Personalized Oncology (DKFZ-HIPO) Personalized Oncology Program (POP).

Author information



Corresponding author

Correspondence to David T. W. Jones.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korshunov, A., Ryzhova, M., Hovestadt, V. et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129, 669–678 (2015).

Download citation


  • Glioblastoma
  • Pediatric
  • Brain tumor
  • Methylation
  • Prognostic
  • Subgroup
  • Survival
  • CDKN2A
  • BRAF