Acta Neuropathologica

, Volume 128, Issue 6, pp 805–820 | Cite as

Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats

  • Staffan Holmqvist
  • Oldriska Chutna
  • Luc Bousset
  • Patrick Aldrin-Kirk
  • Wen Li
  • Tomas Björklund
  • Zhan-You Wang
  • Laurent Roybon
  • Ronald Melki
  • Jia-Yi Li
Original Paper

Abstract

The cellular hallmarks of Parkinson’s disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes in the enteric nervous system and spreads to the brain, suggesting an active retrograde transport of α-synuclein (the key protein component in Lewy bodies), via the vagal nerve. This hypothesis, however, has not been tested experimentally thus far. Here, we use a human PD brain lysate containing different forms of α-synuclein (monomeric, oligomeric and fibrillar), and recombinant α-synuclein in an in vivo animal model to test this hypothesis. We demonstrate that α-synuclein present in the human PD brain lysate and distinct recombinant α-synuclein forms are transported via the vagal nerve and reach the dorsal motor nucleus of the vagus in the brainstem in a time-dependent manner after injection into the intestinal wall. Using live cell imaging in a differentiated neuroblastoma cell line, we determine that both slow and fast components of axonal transport are involved in the transport of aggregated α-synuclein. In conclusion, we here provide the first experimental evidence that different α-synuclein forms can propagate from the gut to the brain, and that microtubule-associated transport is involved in the translocation of aggregated α-synuclein in neurons.

Keywords

Parkinson’s disease Alpha-synuclein Lewy body Protein aggregation Protein propagation 

Supplementary material

401_2014_1343_MOESM1_ESM.wpl (0 kb)
Supplementary material 1 (WPL 0 kb)
401_2014_1343_MOESM2_ESM.pdf (4.5 mb)
Supplementary material 2 (PDF 4574 kb)
401_2014_1343_MOESM3_ESM.docx (31 kb)
Supplementary material 3 (DOCX 31 kb)

References

  1. 1.
    Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmad FJ, Echeverri CJ, Vallee RB, Baas PW (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J Cell Biol 140:391–401PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069. doi:10.1016/S0006-3495(76)85755-4 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Black MM, Lasek RJ (1979) Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res 171:401–413PubMedCrossRefGoogle Scholar
  5. 5.
    Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72PubMedCrossRefGoogle Scholar
  6. 6.
    Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119PubMedGoogle Scholar
  7. 7.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  8. 8.
    Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134PubMedCrossRefGoogle Scholar
  9. 9.
    Braak H, Rub U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536PubMedCrossRefGoogle Scholar
  10. 10.
    Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232PubMedCrossRefGoogle Scholar
  11. 11.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci 106:13010–13015PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M (2012) Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol 72:517–524. doi:10.1002/ana.23747 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ghee M, Melki R, Michot N, Mallet J (2005) PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly. FEBS J 272:4023–4033PubMedCrossRefGoogle Scholar
  15. 15.
    Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725. doi:10.1172/JCI43366 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hardy J (2005) Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: ‘permissive templating’ as a general mechanism underlying neurodegeneration. Biochem Soc Trans 33:578–581PubMedCrossRefGoogle Scholar
  17. 17.
    Hawkes CH, Del Tredici K, Braak H (2009) Parkinson’s disease: the dual hit theory revisited. Ann N Y Acad Sci 1170:615–622PubMedCrossRefGoogle Scholar
  18. 18.
    Jellinger KA (2008) A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 116:1–16PubMedCrossRefGoogle Scholar
  19. 19.
    Jensen PH, Li JY, Dahlstrom A, Dotti CG (1999) Axonal transport of synucleins is mediated by all rate components. Eur J Neurosci 11:3369–3376PubMedCrossRefGoogle Scholar
  20. 20.
    Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265. doi:10.1038/nrc1317 PubMedCrossRefGoogle Scholar
  21. 21.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506PubMedCrossRefGoogle Scholar
  22. 22.
    Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB (2008) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23:2303–2306PubMedCrossRefGoogle Scholar
  23. 23.
    Kurowska Z, Englund E, Widner H, Lindvall O, Li J-Y, Brundin P (2011) Signs of degeneration in 12–22 year old grafts of mesencephalic dopamine neurons in patients with Parkinson’s disease. J Parkinsons Dis 1:83–92. doi:10.3233/jpd-2011-11004 PubMedGoogle Scholar
  24. 24.
    Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212–221CrossRefGoogle Scholar
  25. 25.
    Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P (2009) The second brain and Parkinson’s disease. Eur J Neurosci 30:735–741PubMedCrossRefGoogle Scholar
  26. 26.
    Lee HJ, Suk JE, Lee KW, Park SH, Blumbergs PC, Gai WP, Lee SJ (2011) Transmission of synucleinopathies in the enteric nervous system of A53T alpha-synuclein transgenic mice. Exp Neurobiol 20:181–188. doi:10.5607/en.2011.20.4.181 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lerner A, Bagic A (2008) Olfactory pathogenesis of idiopathic Parkinson disease revisited. Mov Disord 23:1076–1084PubMedCrossRefGoogle Scholar
  29. 29.
    Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746 PubMedCrossRefGoogle Scholar
  30. 30.
    Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25:1091–1096. doi:10.1002/mds.23012 PubMedCrossRefGoogle Scholar
  31. 31.
    Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. doi:10.1126/science.1227157 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986. doi:10.1084/jem.20112457 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous {alpha}-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci 106:20051–20056PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 285:34885–34898. doi:10.1074/jbc.M110.148460 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ (2008) Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 3:e1867PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M et al (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898. doi:10.1038/srep00898 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol 57:82–91PubMedCrossRefGoogle Scholar
  38. 38.
    Parkkinen L, Pirttila T, Alafuzoff I (2008) Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol 115(4):399–407Google Scholar
  39. 39.
    Phair RD, Gorski SA, Misteli T (2004) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol 375:393–414PubMedCrossRefGoogle Scholar
  40. 40.
    Phillips RJ, Walter GC, Wilder SL, Baronowsky EA, Powley TL (2008) Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson’s disease? Neuroscience 153:733–750PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Bohm KJ, Winner B (2013) alpha-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 288:21742–21754. doi:10.1074/jbc.M113.451815 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S, Perez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C et al (2014) Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75:351–362. doi:10.1002/ana.24066 PubMedCrossRefGoogle Scholar
  43. 43.
    Rey NL, Petit GH, Bousset L, Melki R, Brundin P (2013) Transfer of human alpha-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 126:555–573. doi:10.1007/s00401-013-1160-3 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2008) Cytoskeletal requirements in axonal transport of slow component-b. J Neurosci 28:5248–5256PubMedCrossRefGoogle Scholar
  45. 45.
    Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2007) Rapid and intermittent cotransport of slow component-b proteins. J Neurosci 27:3131–3138PubMedCrossRefGoogle Scholar
  46. 46.
    Scott DA, Das U, Tang Y, Roy S (2011) Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron 70:441–454. doi:10.1016/j.neuron.2011.03.022 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Shea TB, Flanagan LA (2001) Kinesin, dynein and neurofilament transport. Trends Neurosci 24:644–648PubMedCrossRefGoogle Scholar
  48. 48.
    Snapp EL, Altan N, Lippincott-Schwartz J (2003) Measuring protein mobility by photobleaching GFP chimeras in living cells. Curr Protoc Cell Biol. doi: 10.1002/0471143030.cb2101s19
  49. 49.
    Ulusoy A, Rusconi R, Perez-Revuelta BI, Musgrove RE, Helwig M, Winzen-Reichert B, Di Monte DA (2013) Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol Med 5:1051–1059. doi:10.1002/emmm.201302475 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci 108:4194–4199. doi:10.1073/pnas.1100976108 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Staffan Holmqvist
    • 1
    • 2
  • Oldriska Chutna
    • 1
  • Luc Bousset
    • 3
  • Patrick Aldrin-Kirk
    • 4
  • Wen Li
    • 1
  • Tomas Björklund
    • 4
  • Zhan-You Wang
    • 5
  • Laurent Roybon
    • 2
  • Ronald Melki
    • 3
  • Jia-Yi Li
    • 1
    • 5
  1. 1.Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience CenterLund UniversityLundSweden
  2. 2.Cell Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, MultiPark Strategic Research Area and Lund Stem Cell CenterLund UniversityLundSweden
  3. 3.Laboratoire d’Enzymologie et de Biochimie Structurale, CNRSGif-Sur-YvetteFrance
  4. 4.Molecular Neuromodulation Unit, Department of Experimental Medical Science, MultiPark Strategic Research Area, Wallenberg Neuroscience CenterLund UniversityLundSweden
  5. 5.College of Life and Health Sciences, Institute of NeuroscienceNortheastern UniversityShenyangChina

Personalised recommendations