Acta Neuropathologica

, Volume 126, Issue 5, pp 763–780 | Cite as

Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells

  • Annegret Kathagen
  • Alexander Schulte
  • Gerd Balcke
  • Heidi S. Phillips
  • Tobias Martens
  • Jakob Matschke
  • Hauke S. Günther
  • Robert Soriano
  • Zora Modrusan
  • Thomas Sandmann
  • Carsten Kuhl
  • Alain Tissier
  • Mareike Holz
  • Lutz A. Krawinkel
  • Markus Glatzel
  • Manfred Westphal
  • Katrin LamszusEmail author
Original Paper


Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the “go or grow” potential of the cells. Our findings extend Warburg’s observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.


Glioblastoma stem cells Hypoxia Glycolysis Pentose phosphate pathway Migration Invasion 



We thank Anna Schöttler, Svenja Zapf, Hildegard Meissner and Regina Peters for expert technical assistance. Annegret Kathagen is a scholar of the Konrad-Adenauer-Stiftung. This work was supported by the Deutsche Forschungsgemeinschaft (LA1300/4-1), Deutsche Krebshilfe, Georg and Jürgen Rickertsen Stiftung and the Rudolf Bartling Stiftung. We further thank the UKE FACS Core Facility for their support on flow cytometric analyses.

Supplementary material

401_2013_1173_MOESM1_ESM.doc (23 kb)
Supplementary material 1 (DOC 23 kb)
401_2013_1173_MOESM2_ESM.ppt (45.2 mb)
Supplementary material 2 (PPT 46289 kb)
401_2013_1173_MOESM3_ESM.doc (33 kb)
Supplementary material 3 (DOC 33 kb)
401_2013_1173_MOESM4_ESM.doc (483 kb)
Supplementary material 4 (DOC 483 kb)
401_2013_1173_MOESM5_ESM.doc (57 kb)
Supplementary material 5 (DOC 57 kb)
401_2013_1173_MOESM6_ESM.doc (60 kb)
Supplementary material 6 (DOC 60 kb)


  1. 1.
    Al-Shahrour F, Minguez P, Tarraga J, Montaner D, Alloza E, Vaquerizas JM, Conde L, Blaschke C, Vera J, Dopazo J (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res 34(Web Server issue):W472–W476Google Scholar
  2. 2.
    Amaral AI, Teixeira AP, Martens S, Bernal V, Sousa MF, Alves PM (2010) Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and metabolic flux analysis. J Neurochem 113(3):735–748CrossRefPubMedGoogle Scholar
  3. 3.
    Balcke GU, Kolle SN, Kamp H, Bethan B, Looser R, Wagner S, Landsiedel R, van Ravenzwaay B (2011) Linking energy metabolism to dysfunctions in mitochondrial respiration–a metabolomics in vitro approach. Toxicol Lett 203(3):200–209CrossRefPubMedGoogle Scholar
  4. 4.
    Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177(3):1491–1502CrossRefPubMedGoogle Scholar
  5. 5.
    Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC, Nam HS, Benezra R (2012) Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 21(1):11–24CrossRefPubMedGoogle Scholar
  6. 6.
    Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 35(Database issue):D760–D765Google Scholar
  7. 7.
    Ben-Yoseph O, Camp DM, Robinson TE, Ross BD (1995) Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13C2,6,6-2H2]glucose and microdialysis. J Neurochem 64(3):1336–1342CrossRefPubMedGoogle Scholar
  8. 8.
    Brahimi-Horn MC, Bellot G, Pouyssegur J (2011) Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 21(1):67–72CrossRefPubMedGoogle Scholar
  9. 9.
    Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64(3):920–927CrossRefPubMedGoogle Scholar
  10. 10.
    Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233CrossRefPubMedGoogle Scholar
  11. 11.
    DeLay M, Jahangiri A, Carbonell WS, Hu YL, Tsao S, Tom MW, Paquette J, Tokuyasu TA, Aghi MK (2012) Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clin Cancer Res 18(10):2930–2942CrossRefPubMedGoogle Scholar
  12. 12.
    Domanska-Janik K (1988) Hexose monophosphate pathway activity in normal and hypoxic rat brain. Resuscitation 16(2):79–90CrossRefPubMedGoogle Scholar
  13. 13.
    Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121(2):276–283CrossRefPubMedGoogle Scholar
  14. 14.
    Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW, Judkins AR, Phillips P, Geoerger B, Koch CJ (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64(5):1886–1892CrossRefPubMedGoogle Scholar
  15. 15.
    Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 102(13):4783–4788CrossRefPubMedGoogle Scholar
  16. 16.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021CrossRefPubMedGoogle Scholar
  17. 17.
    Gao L, Mejias R, Echevarria M, Lopez-Barneo J (2004) Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS Lett 569(1–3):256–260CrossRefPubMedGoogle Scholar
  18. 18.
    Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21(8):1624–1636CrossRefPubMedGoogle Scholar
  19. 19.
    Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR Jr, Gillespie GY (2008) CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE 3(11):e3655CrossRefPubMedGoogle Scholar
  20. 20.
    Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27(20):2897–2909CrossRefPubMedGoogle Scholar
  21. 21.
    Hakim AM, Moss G, Gollomp SM (1976) The effect of hypoxia on the pentose phosphate pathway in brain. J Neurochem 26(4):683–688CrossRefPubMedGoogle Scholar
  22. 22.
    Hattingen E, Jurcoane A, Bahr O, Rieger J, Magerkurth J, Anti S, Steinbach JP, Pilatus U (2011) Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol 13(12):1349–1363CrossRefPubMedGoogle Scholar
  23. 23.
    Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284CrossRefPubMedGoogle Scholar
  24. 24.
    Husain J, Juurlink BH (1995) Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res 698(1–2):86–94CrossRefPubMedGoogle Scholar
  25. 25.
    Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108(9):3749–3754CrossRefPubMedGoogle Scholar
  26. 26.
    Kingsley-Hickman PB, Ross BD, Krick T (1990) Hexose monophosphate shunt measurement in cultured cells with [1-13C]glucose: correction for endogenous carbon sources using [6-13C] glucose. Anal Biochem 185(2):235–237CrossRefPubMedGoogle Scholar
  27. 27.
    Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61(18):6624–6628PubMedGoogle Scholar
  28. 28.
    Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, Forrest WF, Pujara K, Carrillo JA, Pandita A, Ellingson BM, Bowers CW, Soriano RH, Schmidt NO, Mohan S, Yong WH, Seshagiri S, Modrusan Z, Jiang Z, Aldape KD, Mischel PS, Liau LM, Escovedo CJ, Chen W, Nghiemphu PL, James CD, Prados MD, Westphal M, Lamszus K, Cloughesy T, Phillips HS (2011) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29(34):4482–4490CrossRefPubMedGoogle Scholar
  29. 29.
    Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M (1998) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Physiol 274(5 Pt 1):E843–E851PubMedGoogle Scholar
  30. 30.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMedGoogle Scholar
  31. 31.
    Makeh I, Thomas M, Hardelin JP, Briand P, Kahn A, Skala H (1994) Analysis of a brain-specific isozyme. Expression and chromatin structure of the rat aldolase C gene and transgenes. J Biol Chem 269(6):4194–4200PubMedGoogle Scholar
  32. 32.
    Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652CrossRefPubMedGoogle Scholar
  33. 33.
    Matsumoto S, Yasui H, Mitchell JB, Krishna MC (2010) Imaging cycling tumor hypoxia. Cancer Res 70(24):10019–10023CrossRefPubMedGoogle Scholar
  34. 34.
    McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7(4):489–497CrossRefPubMedGoogle Scholar
  35. 35.
    McLendon RE, Rich JN (2011) Glioblastoma stem cells: a neuropathologist’s view. J Oncol 2011:397195Google Scholar
  36. 36.
    Mukherjee J, Phillips JJ, Zheng S, Wiencke J, Ronen SM, Pieper RO (2013) Pyruvate kinase M2 expression, but not pyruvate kinase activity, is up-regulated in a grade-specific manner in human glioma. PLoS ONE 8(2):e57610CrossRefPubMedGoogle Scholar
  37. 37.
    Osada-Oka M, Hashiba Y, Akiba S, Imaoka S, Sato T (2010) Glucose is necessary for stabilization of hypoxia-inducible factor-1alpha under hypoxia: contribution of the pentose phosphate pathway to this stabilization. FEBS Lett 584(14):3073–3079CrossRefPubMedGoogle Scholar
  38. 38.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173CrossRefPubMedGoogle Scholar
  39. 39.
    Pistollato F, Chen HL, Rood BR, Zhang HZ, D’Avella D, Denaro L, Gardiman M, te Kronnie G, Schwartz PH, Favaro E, Indraccolo S, Basso G, Panchision DM (2009) Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 27(1):7–17CrossRefPubMedGoogle Scholar
  40. 40.
    Platet N, Liu SY, Atifi ME, Oliver L, Vallette FM, Berger F, Wion D (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258(2):286–290CrossRefPubMedGoogle Scholar
  41. 41.
    Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2(4):306–314CrossRefPubMedGoogle Scholar
  42. 42.
    Schulte A, Günther HS, Phillips HS, Kemming D, Martens T, Kharbanda S, Soriano RH, Modrusan Z, Zapf S, Westphal M, Lamszus K (2011) A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia 59(4):590–602CrossRefPubMedGoogle Scholar
  43. 43.
    Seidel S, Garvalov BK, Wirta V, von Stechow L, Schanzer A, Meletis K, Wolter M, Sommerlad D, Henze AT, Nister M, Reifenberger G, Lundeberg J, Frisen J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133(Pt 4):983–995CrossRefPubMedGoogle Scholar
  44. 44.
    Semenza GL (2011) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56CrossRefGoogle Scholar
  45. 45.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401CrossRefPubMedGoogle Scholar
  46. 46.
    Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28(45):3949–3959CrossRefPubMedGoogle Scholar
  47. 47.
    Staal GE, Kalff A, Heesbeen EC, van Veelen CW, Rijksen G (1987) Subunit composition, regulatory properties, and phosphorylation of phosphofructokinase from human gliomas. Cancer Res 47(19):5047–5051PubMedGoogle Scholar
  48. 48.
    Stieber D, Abdul Rahim SA, Niclou SP (2011) Novel ways to target brain tumour metabolism. Expert Opin Ther Targets 15(10):1227–1239CrossRefPubMedGoogle Scholar
  49. 49.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033CrossRefPubMedGoogle Scholar
  50. 50.
    Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499CrossRefPubMedGoogle Scholar
  51. 51.
    Volker HU, Hagemann C, Coy J, Wittig R, Sommer S, Stojic J, Haubitz I, Vince GH, Kammerer U, Monoranu CM (2008) Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas. Am J Clin Pathol 130(1):50–57CrossRefPubMedGoogle Scholar
  52. 52.
    Wamelink MM, Struys EA, Jakobs C (2008) The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis 31(6):703–717CrossRefPubMedGoogle Scholar
  53. 53.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314CrossRefPubMedGoogle Scholar
  54. 54.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21(3):297–308CrossRefPubMedGoogle Scholar
  55. 55.
    Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12(9):495–508CrossRefPubMedGoogle Scholar
  56. 56.
    Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208(2):313–326CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Annegret Kathagen
    • 1
  • Alexander Schulte
    • 1
  • Gerd Balcke
    • 2
  • Heidi S. Phillips
    • 3
  • Tobias Martens
    • 1
  • Jakob Matschke
    • 4
  • Hauke S. Günther
    • 1
  • Robert Soriano
    • 5
  • Zora Modrusan
    • 5
  • Thomas Sandmann
    • 6
  • Carsten Kuhl
    • 7
  • Alain Tissier
    • 2
  • Mareike Holz
    • 1
  • Lutz A. Krawinkel
    • 1
  • Markus Glatzel
    • 4
  • Manfred Westphal
    • 1
  • Katrin Lamszus
    • 1
    Email author
  1. 1.Laboratory for Brain Tumor Biology, Department of NeurosurgeryUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Cell and Metabolic BiologyLeibniz Institute of Plant BiochemistryHalleGermany
  3. 3.Department of Translational OncologyGenentech, Inc.South San FranciscoUSA
  4. 4.Institute of NeuropathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  5. 5.Department of Molecular BiologyGenentech, Inc.South San FranciscoUSA
  6. 6.Department of Bioinformatics and Computational BiologyGenentech, Inc.South San FranciscoUSA
  7. 7.Department of Stress and Developmental BiologyLeibniz Institute of Plant BiochemistryHalleGermany

Personalised recommendations