Albert MS, Dekosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279
PubMed
Google Scholar
Alonso AC, Li B, Grundke-Iqbal I et al (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5:375–384
PubMed
CAS
Google Scholar
Amieva H, le Goff M, Millet X et al (2008) Prodromal Alzheimer’s disease: successive emergence of clinical symptoms. Ann Neurol 64:492–498
PubMed
Google Scholar
Andreasen N, Hesse C, Davidsson P et al (1999) Cerebrospinal fluid β-amyloid(1–42) in Alzheimer’s disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol 56:673–680
PubMed
CAS
Google Scholar
Andreasen N, Minthon L, Vanmechelen E et al (1999) Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 273:5–8
PubMed
CAS
Google Scholar
Arai H, Terajima M, Miura M et al (1995) Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease. Ann Neurol 38:649–652
PubMed
CAS
Google Scholar
Arnold SE, Hyman BT, Flory J et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebr Cortex 1:103–116
CAS
Google Scholar
Baas PW (2002) Microtubule transport in the axon. Int Rev Cytol 212:41–62
PubMed
CAS
Google Scholar
Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Rev Neurosci 8:663–672
CAS
Google Scholar
Bancher C, Brunner C, Lassmann H et al (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99
PubMed
CAS
Google Scholar
Bateman RJ, Xiong C, Benzinger TL, Dominantly Inherited Alzheimer Network et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804
PubMed
CAS
Google Scholar
Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 1:213–225
PubMed
Google Scholar
Blennow K, Hampel H (2003) Cerebrospinal fluid markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613
PubMed
CAS
Google Scholar
Blennow K, Wallin A, Agren H et al (1995) Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26:231–245
PubMed
CAS
Google Scholar
Blennow K, Zetterberg H, Minthon L et al (2007) Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett 419:18–22
PubMed
CAS
Google Scholar
Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144
PubMed
CAS
Google Scholar
Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neuron 76:886–899
PubMed
CAS
Google Scholar
Blennow K, Zetterberg H, Fagan AM (2012) Fluid biomarkers in Alzheimer’s disease. Cold Spring Harb Perspect Med 2:a006221
PubMed
Google Scholar
Blom ES, Giedraitis V, Zetterberg H et al (2009) Rapid progression from mild cognitive impairment to Alzheimer’s disease in subjects with elevated levels of tau in cerebrospinal fluid and the APOE epsilon4/epsilon4 genotype. Dement Geriatr Cogn Disord 27:458–464
PubMed
CAS
Google Scholar
Bobinski M, Wegiel J, Tarnawski M et al (1998) Duration of neurofibrillary changes in the hippocampal pyramidal neurons. Brain Res 799:156–158
PubMed
CAS
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259
PubMed
CAS
Google Scholar
Braak H, del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-β formation. Neurobiol Aging 25:713–718
PubMed
Google Scholar
Braak H, del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181
PubMed
Google Scholar
Braak H, del Tredici K (2012) Alzheimer’s disease: pathogenesis and prevention. Alzheimers Dement 8:227–233
PubMed
CAS
Google Scholar
Braak H, del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714
PubMed
CAS
Google Scholar
Braak H, del Tredici K (2013) Evolutional aspects of Alzheimer’s disease pathogenesis. J Alzheimer Dis 30(Suppl 1):155–161
Google Scholar
Braak H, Thal DR, Ghebremedhin E et al (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969
PubMed
CAS
Google Scholar
Buchhave P, Minthon L, Zetterberg H et al (2012) Cerebrospinal fluid levels of β-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69:98–106
PubMed
CAS
Google Scholar
Buerger K, Ewers M, Pirttilä T et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129:3035–3041
PubMed
Google Scholar
Cowan CM, Bossing T, Page A et al (2010) Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120:593–604
PubMed
CAS
Google Scholar
Degerman Gunnarsson M, Lindau M, Wall A et al (2010) Pittsburgh Compound-B and Alzheimer’s disease biomarkers in CSF, plasma and urine: an exploratory study. Dement Geriatr Cogn Disord 29:204–212
PubMed
CAS
Google Scholar
Dolan D, Troncoso J, Resnick SM et al (2010) Age, Alzheimer’s disease and dementia in the Baltimore Longitudinal Study of Ageing. Brain 133:2225–2231
PubMed
Google Scholar
Dong S, Duan Y, Hu Y, Zhao Z (2012) Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener 1:1–12
Google Scholar
Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer’s disease. Acta Neuropathol 118:5–36
PubMed
CAS
Google Scholar
Elobeid A, Soininen H, Alafuzoff I (2011) Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol 123:97–104
PubMed
Google Scholar
Fagan AM, Mintun MA, Mach RH et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519
PubMed
CAS
Google Scholar
Fagan AM, Roe CM, Xiong C et al (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64:343–349
PubMed
Google Scholar
Fewster PH, Griffin-Brooks S, MacGregor J et al (1991) A topographical pathway by which histopathological lesions disseminate through the brain of patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2:121–132
Google Scholar
Fillenbaum GG, van Belle G, Morris JC et al (2008) CERAD (Consortium to establish a registry for Alzheimer’s disease) The first 20 years. Alzheimers Dement 4:96–109
PubMed
Google Scholar
Fodero-Tavoletti MT, Okamura N, Furumoto S et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134:1089–1100
PubMed
Google Scholar
Galvan V, Gorostiza OF, Banweit S et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci USA 103:7130–7135
PubMed
CAS
Google Scholar
Giannakopoulos P, Herrmann FR, Bussiere T et al (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500
PubMed
CAS
Google Scholar
Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9(Suppl):195–207
PubMed
CAS
Google Scholar
Grimmer T, Henriksen G, Wester HJ et al (2009) Clinical severity of Alzheimer’s disease is associated with PiB uptake in PET. Neurobiol Aging 30:1902–1909
PubMed
CAS
Google Scholar
Grimmer T, Riemenschneider M, Förstl H et al (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65:927–934
PubMed
CAS
Google Scholar
Guillozet AL, Weintraub S, Mash DC et al (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736
PubMed
Google Scholar
Gustafson DR, Skoog I, Rosengren L et al (2007) Cerebrospinal fluid β-amyloid 1–42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry 78:461–464
PubMed
Google Scholar
Hall GF (2012) The biology and pathobiology of tau protein. In: Kavallaris M (ed) The cytoskeleton and human disease. Springer, New York, pp 285–313
Google Scholar
Hall GF, Saman S (2012) Death or secretion? The demise of a plausible assumption about CSF-tau in Alzheimer disease? Commun Integrat Biol 5:1–4
Google Scholar
Hardy JA (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9:151–153
PubMed
CAS
Google Scholar
Hardy JA, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356
PubMed
CAS
Google Scholar
Hesse C, Rosengren L, Vanmechelen E et al (2000) Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke. J Alzheimer Dis 2:199–206
CAS
Google Scholar
Hesse C, Rosengren L, Andreasen N et al (2001) Transient increase in CSF total tau but not phospho-tau after acute stroke. Neurosci Lett 297:187–190
PubMed
CAS
Google Scholar
Hyman BT, Goméz-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging 15:353–354
PubMed
CAS
Google Scholar
Hyman BT, Phelps CH, Beach TG et al (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alheimers Dement 8:1–13
Google Scholar
Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645
PubMed
Google Scholar
Iqbal K, Grundke-Iqbal I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12:38–55
PubMed
CAS
Google Scholar
Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69
PubMed
CAS
Google Scholar
Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128
PubMed
CAS
Google Scholar
Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216
PubMed
CAS
Google Scholar
Jeganathan S, von Bergen M, Mandelkow EM et al (2008) The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47:10526–10539
PubMed
CAS
Google Scholar
Jensen JR, Cisek K, Funk KE et al (2011) Research towards tau imaging. J Alzheimers Dis 26(Suppl 3):147–157
PubMed
Google Scholar
Karran E, Mercken M, de Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712
PubMed
CAS
Google Scholar
Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319
PubMed
CAS
Google Scholar
Korczyn AD (2008) The amyloid cascade hypothesis. Alzheimers Dement 4:176–178
PubMed
CAS
Google Scholar
Kovacech B, Skrabana R, Novak M (2010) Transition of tau protein from disordered to misordered in Alzheimer’s disease. Neurodegener Dis 7:24–27
PubMed
CAS
Google Scholar
Le S, Kim W, Li Z, McKee AC, Hall GF (2012) Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. Int J Alzheimers Dis 2012:172837. doi:10.1155/2012/172837
Google Scholar
Lee HG, Casadesus G, Zhu X et al (2004) Perspectives on the amyloid-beta cascade hypothesis. J Alzheimers Dis 6:137–145
PubMed
CAS
Google Scholar
Lee HG, Zhu K, Castellani RJ et al (2007) Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther 321:823–829
PubMed
CAS
Google Scholar
Li B, Chohan MO, Grundke-Iqbal I et al (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511
PubMed
CAS
Google Scholar
Liu F, Xue ZQ, Deng SH, et al (2013) γ-Secretase binding sites in aged and Alzheimer’s disease human cerebrum: the choroid plexus as a putative origin of CSF Aβ. Eur J Neurosci 12159 [Epub ahead of print]. doi:10.1111/ejn
Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247
PubMed
Google Scholar
Mandelkow E, von Bergen M, Biernat J et al (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90
PubMed
CAS
Google Scholar
Markesbery WR, Schmitt FA, Kryscio RJ et al (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46
PubMed
Google Scholar
Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006262
PubMed
Google Scholar
Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639
PubMed
CAS
Google Scholar
Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393
PubMed
CAS
Google Scholar
Mattsson N, Portelius E, Rolstad S et al (2012) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30:767–778
PubMed
CAS
Google Scholar
McKee A, Stein TD, Nowinski CJ et al (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64
PubMed
Google Scholar
Mirra S, Heyman A, McKeel D et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486
PubMed
CAS
Google Scholar
Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11
PubMed
CAS
Google Scholar
Moonis M, Swearer JM, Dayaw MP et al (2005) Familial Alzheimer disease: decreases in CSF Abeta42 levels precede cognitive decline. Neurology 65:323–325
PubMed
CAS
Google Scholar
Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197
PubMed
CAS
Google Scholar
Motter R, Vigo-Pelfrey C, Kholodenko D et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38:643–648
PubMed
CAS
Google Scholar
Nelson PT, Jicha GA, Schmitt FA et al (2007) Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 66:1136–1146
PubMed
Google Scholar
Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer’s disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14
PubMed
CAS
Google Scholar
Nelson PT, Head E, Schmitt FA et al (2011) Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 121:571–587
PubMed
Google Scholar
Nelson PT, Alafuzoff I, Bigio EH et al (2012) Correlation of Alzheimer’s disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381
PubMed
Google Scholar
Neselius S, Brisby H, Theodorsson A et al (2012) CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE 7(4):e33606
PubMed
CAS
Google Scholar
Olsson A, Vanderstichele H, Andreasen N et al (2005) Simultaneous measurement of β-amyloid(1–42), tau and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51:336–345
PubMed
CAS
Google Scholar
Öst M, Nylén K, Csajbok L, Olsson Öhrfelt A et al (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67:1600–1604
PubMed
Google Scholar
Otto M, Wiltfang J, Tumani H et al (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225:210–212
PubMed
CAS
Google Scholar
Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268
PubMed
CAS
Google Scholar
Pooler AM, Phillips EC, Lau DHW et al (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394
PubMed
CAS
Google Scholar
Rajendran L, Annaert W (2012) Membrane trafficking pathways in Alzheimer’s disease. Traffic 13:759–770
PubMed
CAS
Google Scholar
Ringman JM, Younkin SG, Pratico D et al (2008) Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71:85–92
PubMed
CAS
Google Scholar
Ringman JM, Coppola G, Elashoff D et al (2012) Cerebrospinal fluid biomarkers and proximity to diagnosis in preclinical familial Alzheimer’s disease. Dement Geriatr Cogn Disord 33:1–5
PubMed
CAS
Google Scholar
Sabbagh MN, Cooper K, DeLange J et al (2010) Functional, global and cognitive decline correlates to accumulation of Alzheimer’s pathology in MCI and AD. Curr Alzheimer Res 7:280–286
PubMed
CAS
Google Scholar
Saman S, Kim W, Raya M et al (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849
PubMed
CAS
Google Scholar
Sämgård K, Zetterberg H, Blennow K et al (2010) Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 25:403–410
PubMed
Google Scholar
Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711
PubMed
Google Scholar
Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447
PubMed
CAS
Google Scholar
Selkoe DJ (2004) Aging, amyloid, and Alzheimer’s disease: a perspective in honor of Carl Cotman. Neurochem Res 28:1703–1713
Google Scholar
Selkoe DJ, Mandelkow E, Holtzman D (2012) Deciphering Alzheimer disease. Cold Spring Harb Perspect Med 2:1–8
Google Scholar
Seubert P, Vigo-Pelfrey C, Esch F et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327
PubMed
CAS
Google Scholar
Shaw LM, Vanderstichele H, Knapik-Czajka M, Alzheimer’s Disease Neuroimaging Initiative et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413
PubMed
CAS
Google Scholar
Siemers ER (2009) How can we recognize “disease modification” effects? J Nutr Health Aging 13:341–343
PubMed
CAS
Google Scholar
Skoog I, Davidsson P, Aevarsson O et al (2003) Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds. Dement Geriatr Cogn Disord 15:169–176
PubMed
CAS
Google Scholar
Sperling RA, Eisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292
PubMed
Google Scholar
Stomrud E, Hansson O, Blennow K et al (2007) Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy controls. Dement Geriatr Cogn Disord 24:118–124
PubMed
CAS
Google Scholar
Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60:652–656
PubMed
CAS
Google Scholar
Sunderland T, Linker G, Mirza N et al (2003) Decreased beta-amyloid 1–42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer’s disease. JAMA 289:2094–2103
PubMed
Google Scholar
Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid (beta)-amyloid 42 and tau proteins as biomarker changes in the brain. Arch Neurol 66:382–389
PubMed
Google Scholar
Tato RE, Frank A, Hernanz A (1995) Tau protein concentrations in cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Neurosurg Psychiatry 59:280–283
PubMed
CAS
Google Scholar
Thal DR, Rüb U, Schultz C et al (2000) Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748
PubMed
CAS
Google Scholar
Thal DR, Rüb U, Orantes M et al (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800
PubMed
Google Scholar
Uchihara T (2007) Silver diagnosis in neuropathology: principles, practice and revised interpretation. Acta Neuropathol 113:483–499
PubMed
Google Scholar
Uchihara T, Nakamura A, Yamazaki M, Mori O (2001) Evolution from pretangle neurons to neurofibrillary tangles monitored by thiazin red combined with Gallyas method and double immunofluorescence. Acta Neuropathol 101:535–539
PubMed
CAS
Google Scholar
Vanderstichele HM, Shaw L, Vandijck M, et al (2013) Alzheimer disease biomarker testing in cerebrospinal fluid: a method to harmonize assay platforms in the absence of an absolute reference standard. Clin Chem 25 January [ahead of print]. doi:10.1373/clinchem.2012.201830
Vandermeeren M, Mercken M, Vanmechelen E et al (1993) Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 61:1828–1834
PubMed
CAS
Google Scholar
Vanmechelen E, Vanderstichele H, Davidsson P et al (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52
PubMed
CAS
Google Scholar
van Rossum IA, Vos SJB, Burns L et al (2012) Injury markers predict cognitive decline in subjects with MCI and amyloid pathology. Neurology 79:1809–1816
PubMed
Google Scholar
Visser PJ, Verhey F, Knol DL et al (2009) Prevalence and prognostic value of cerebrospinal fluid markers of Alzheimer pathology in subjects with subjective cognitive impairment and mild cognitive impairment. The DESCRIPA study. Lancet Neurol 8:619–627
PubMed
Google Scholar
Vlassenko AG, Benzinger TL, Morris JC (2012) PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 1822:370–379
PubMed
CAS
Google Scholar
von Bergen M, Barghorn S, Biernat J et al (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739:158–166
Google Scholar
Wallin ÅK, Blennow K, Andreasen N, Minthon L (2006) CSF biomarkers for Alzheimer’s disease: levels of β-amyloid, tau and phosphorylated tau relate to clinical symptoms and survival. Dement Geriatr Cogn Disord 21:131–138
PubMed
CAS
Google Scholar
Weaver CL, Espinoza M, Kress Y et al (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21:719–727
PubMed
CAS
Google Scholar
Zetterberg H, Hietala MA, Jonsson M et al (2006) Neurochemical aftermath of amateur boxing. Arch Neurol 63:1277–1280
PubMed
Google Scholar
Zetterberg H, Pedersen M, Lind K et al (2007) Intra-individual stability of CSF biomarkers for Alzheimer’s disease over two years. J Alzheimers Dis 12:255–260
PubMed
CAS
Google Scholar
Zetterberg H, Tullhög K, Hansson O et al (2010) Low incidence of post-lumbar puncture headache in 1,089 consecutive memory clinic patients. Eur Neurol 63:326–330
PubMed
Google Scholar