Acta Neuropathologica

, Volume 125, Issue 3, pp 413–423 | Cite as

hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations

  • Kohji Mori
  • Sven Lammich
  • Ian R. A. Mackenzie
  • Ignasi Forné
  • Sonja Zilow
  • Hans Kretzschmar
  • Dieter Edbauer
  • Jonathan Janssens
  • Gernot Kleinberger
  • Marc Cruts
  • Jochen Herms
  • Manuela Neumann
  • Christine Van Broeckhoven
  • Thomas Arzberger
  • Christian Haass
Original Paper

Abstract

Genetic analysis revealed the hexanucleotide repeat expansion GGGGCC within the regulatory region of the gene C9orf72 as the most common cause of familial amyotrophic lateral sclerosis and the second most common cause of frontotemporal lobar degeneration. Since repeat expansions might cause RNA toxicity via sequestration of RNA-binding proteins, we searched for proteins capable of binding to GGGGCC repeats. In vitro-transcribed biotinylated RNA containing hexanucleotide GGGGCC or, as control, AAAACC repeats were incubated with nuclear protein extracts. Using stringent filtering protocols 20 RNA-binding proteins with a variety of different functions in RNA metabolism, translation and transport were identified. A subset of these proteins was further investigated by immunohistochemistry in human autopsy brains. This revealed that hnRNP A3 formed neuronal cytoplasmic and intranuclear inclusions in the hippocampus of patients with C9orf72 repeat extensions. Confocal microcopy showed that these inclusions belong to the group of the so far enigmatic p62-positive/TDP-43 negative inclusions characteristically seen in autopsy cases of diseased C9orf72 repeat expansion carriers. Thus, we have identified one protein component of these pathognomonic inclusions.

Keywords

ALS C9orf72 FTLD hnRNP A3 Neurodegeneration TDP-43 

Supplementary material

401_2013_1088_MOESM1_ESM.xlsx (62 kb)
Supplementary material 1 (XLSX 62 kb)
401_2013_1088_MOESM2_ESM.pdf (536 kb)
Supplementary material 2 (PDF 536 kb)
401_2013_1088_MOESM3_ESM.docx (33 kb)
Supplementary material 3 (DOCX 33 kb)

References

  1. 1.
    Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122(6):691–702PubMedCrossRefGoogle Scholar
  2. 2.
    Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611PubMedCrossRefGoogle Scholar
  3. 3.
    Baker M, Mackenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919PubMedCrossRefGoogle Scholar
  4. 4.
    Benajiba L, Le Ber I, Camuzat A et al (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 65(4):470–473PubMedCrossRefGoogle Scholar
  5. 5.
    Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123(6):825–839PubMedCrossRefGoogle Scholar
  6. 6.
    Collins M, Riascos D, Kovalik T et al (2012) The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients. Acta Neuropathol 124(5):717–732PubMedCrossRefGoogle Scholar
  7. 7.
    Cruts M, Gijselinck I, van der Zee J et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924PubMedCrossRefGoogle Scholar
  8. 8.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256PubMedCrossRefGoogle Scholar
  9. 9.
    Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11(5):1475–1489PubMedCrossRefGoogle Scholar
  10. 10.
    Dormann D, Madl T, Valori CF et al (2012) Arginine methylation next to the PY-NLS modulates transportin binding and nuclear import of FUS. EMBO J 31(22):4258–4275PubMedCrossRefGoogle Scholar
  11. 11.
    Elden AC, Kim HJ, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075PubMedCrossRefGoogle Scholar
  12. 12.
    Fratta P, Mizielinska S, Nicoll AJ et al (2012) C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2:1016PubMedCrossRefGoogle Scholar
  13. 13.
    Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Mov Disord 26(6):1042–1048PubMedCrossRefGoogle Scholar
  14. 14.
    Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65PubMedCrossRefGoogle Scholar
  15. 15.
    Gomez-Tortosa E, Gallego J, Guerrero-Lopez R et al (2013) C9ORF72 hexanucleotide expansions of 20–22 repeats are associated with frontotemporal deterioration. Neurology. doi:10.1212/WNL.0b013e31827f08ea PubMedGoogle Scholar
  16. 16.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112PubMedCrossRefGoogle Scholar
  17. 17.
    He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66(7):1239–1256PubMedCrossRefGoogle Scholar
  18. 18.
    Hilleren PJ, Parker R (2003) Cytoplasmic degradation of splice-defective pre-mRNAs and intermediates. Mol Cell 12(6):1453–1465PubMedCrossRefGoogle Scholar
  19. 19.
    Keller BA, Volkening K, Droppelmann CA et al (2012) Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 124(5):733–747PubMedCrossRefGoogle Scholar
  20. 20.
    Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208PubMedCrossRefGoogle Scholar
  21. 21.
    Ma AS, Moran-Jones K, Shan J et al (2002) Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding protein. J Biol Chem 277(20):18010–18020PubMedCrossRefGoogle Scholar
  22. 22.
    Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113PubMedCrossRefGoogle Scholar
  23. 23.
    Maruyama H, Morino H, Ito H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465(7295):223–226PubMedCrossRefGoogle Scholar
  24. 24.
    Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117(2):137–149PubMedCrossRefGoogle Scholar
  25. 25.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133PubMedCrossRefGoogle Scholar
  26. 26.
    Papadopoulou C, Boukakis G, Ganou V et al (2012) Expression profile and interactions of hnRNP A3 within hnRNP/mRNP complexes in mammals. Arch Biochem Biophys 523(2):151–160PubMedCrossRefGoogle Scholar
  27. 27.
    Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8(8):423–434PubMedGoogle Scholar
  28. 28.
    Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277PubMedCrossRefGoogle Scholar
  29. 29.
    Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268PubMedCrossRefGoogle Scholar
  30. 30.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62PubMedCrossRefGoogle Scholar
  31. 31.
    Schreiner B, Westerburg H, Forne I et al (2012) Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell doi. doi:10.1091/mbc.E12-05-0420 Google Scholar
  32. 32.
    Shevchenko A, Chernushevich I, Wilm M, Mann M (2000) De Novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments. Methods Mol Biol 146:1–16PubMedGoogle Scholar
  33. 33.
    Sieben A, Van Langenhove T, Engelborghs S et al (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124(3):353–372PubMedCrossRefGoogle Scholar
  34. 34.
    Simon-Sanchez J, Dopper EG, Cohn-Hokke PE et al (2012) The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135(Pt 3):723–735PubMedCrossRefGoogle Scholar
  35. 35.
    Skibinski G, Parkinson NJ, Brown JM et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37(8):806–808PubMedCrossRefGoogle Scholar
  36. 36.
    Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672PubMedCrossRefGoogle Scholar
  37. 37.
    Thompson DM, Parker R (2007) Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol Cell Biol 27(1):92–101PubMedCrossRefGoogle Scholar
  38. 38.
    Van Deerlin VM, Sleiman PM, Martinez-Lage M et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42(3):234–239PubMedCrossRefGoogle Scholar
  39. 39.
    van der Zee J, Gijselinck I, Dillen L et al (2012) A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence. Genomic Instability and intermediate repeats. Hum Mutat. doi:10.1002/humu.22244 Google Scholar
  40. 40.
    Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211PubMedCrossRefGoogle Scholar
  41. 41.
    Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36(4):377–381PubMedCrossRefGoogle Scholar
  42. 42.
    Wilm M, Shevchenko A, Houthaeve T et al (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379(6564):466–469PubMedCrossRefGoogle Scholar
  43. 43.
    Wu CH, Fallini C, Ticozzi N et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488(7412):499–503PubMedCrossRefGoogle Scholar
  44. 44.
    Zu T, Gibbens B, Doty NS et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 108(1):260–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kohji Mori
    • 1
  • Sven Lammich
    • 1
  • Ian R. A. Mackenzie
    • 2
  • Ignasi Forné
    • 3
  • Sonja Zilow
    • 1
  • Hans Kretzschmar
    • 4
  • Dieter Edbauer
    • 5
  • Jonathan Janssens
    • 6
    • 7
  • Gernot Kleinberger
    • 1
    • 5
    • 6
    • 7
  • Marc Cruts
    • 6
    • 7
  • Jochen Herms
    • 5
    • 8
  • Manuela Neumann
    • 9
    • 10
  • Christine Van Broeckhoven
    • 6
    • 7
  • Thomas Arzberger
    • 4
  • Christian Haass
    • 1
    • 5
    • 8
  1. 1.Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
  3. 3.Adolf-Butenandt-Institute, Protein Analysis UnitLudwig-Maximilians-UniversityMunichGermany
  4. 4.Center for Neuropathology and Prion ResearchLudwig-Maximilians-UniversityMunichGermany
  5. 5.DZNE, German Center for Neurodegenerative DiseasesMunichGermany
  6. 6.Neurodegenerative Brain Diseases Group, Department of Molecular GeneticsVIBAntwerpBelgium
  7. 7.Laboratory of Neurogenetics, Institute Born-BungeUniversity of AntwerpAntwerpBelgium
  8. 8.Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  9. 9.DZNE, German Center for Neurodegenerative DiseasesTübingenGermany
  10. 10.Department of NeuropathologyUniversity of TübingenTübingenGermany

Personalised recommendations