Skip to main content

Advertisement

Log in

Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Diabetic neuropathy includes damage to neurons, Schwann cells and blood vessels. Rodent models of diabetes do not adequately replicate all pathological features of diabetic neuropathy, particularly Schwann cell damage. We, therefore, tested the hypothesis that combining hypertension, a risk factor for neuropathy in diabetic patients, with insulin-deficient diabetes produces a more pertinent model of peripheral neuropathy. Behavioral, physiological and structural indices of neuropathy were measured for up to 6 months in spontaneously hypertensive and age-matched normotensive rats with or without concurrent streptozotocin-induced diabetes. Hypertensive rats developed nerve ischemia, thermal hyperalgesia, nerve conduction slowing and axonal atrophy. Thinly myelinated fibers with supernumerary Schwann cells indicative of cycles of demyelination and remyelination were also identified along with reduced nerve levels of myelin basic protein. Similar disorders were noted in streptozotocin-diabetic rats, except that thinly myelinated fibers were not observed and expression of myelin basic protein was normal. Superimposing diabetes on hypertension compounded disorders of nerve blood flow, conduction slowing and axonal atrophy and increased the incidence of thinly myelinated fibers. Rats with combined insulinopenia, hyperglycemia and hypertension provide a model for diabetic neuropathy that offers an opportunity to study mechanisms of Schwann cell pathology and suggests that hypertension may contribute to the etiology of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Behse F, Buchthal (1978) Sensory action potentials and biopsy of the sural nerve in neuropathy. Brain 101(3):473–493

  2. Behse F, Buchthal F, Carlsen F (1977) Nerve biopsy and conduction studies in diabetic neuropathy. J Neurol Neurosurg Psychiatry 40(11):1072–1082

    Article  PubMed  CAS  Google Scholar 

  3. Beiswenger KK, Calcutt NA, Mizisin AP (2008) Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice. Neurosci Lett 442(3):267–272

    Article  PubMed  CAS  Google Scholar 

  4. Beiswenger KK, Calcutt NA, Mizisin AP (2008) Epidermal nerve fiber quantification in the assessment of diabetic neuropathy. Acta Histochem 110(5):351–362

    Article  PubMed  Google Scholar 

  5. Bensfield AC, Evans J, Pesayco JP, Mizisin AP, Shelton GD (2011) Recurrent demyelination and remyelination in 37 young bengal cats with polyneuropathy. J Vet Intern Med 25(4):882–889

    Article  PubMed  CAS  Google Scholar 

  6. Bianchi R, Buyukakilli B, Brines M, Savino C, Cavaletti G, Oggioni N, Lauria G, Borgna M, Lombardi R, Cimen B, Comelekoglu U, Kanik A, Tataroglu C, Cerami A, Ghezzi P (2004) Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci USA 101(3):823–828

    Article  PubMed  CAS  Google Scholar 

  7. Britland ST, Sharma AK, Duguid IG, Thomas PK (1985) Ultrastructural observations on myelinated fibres in the tibial nerve of streptozotocin-diabetic rats: effect of insulin treatment. Life Support Syst 3(Suppl 1):524–529

    PubMed  Google Scholar 

  8. Calcutt NA (2004) Modeling diabetic sensory neuropathy in rats. Methods Mol Med 99:55–65

    PubMed  Google Scholar 

  9. Calcutt NA, Campana WM, Eskeland NL, Mohiuddin L, Dines KC, Mizisin AP, O’Brien JS (1999) Prosaposin gene expression and the efficacy of a prosaposin-derived peptide in preventing structural and functional disorders of peripheral nerve in diabetic rats. J Neuropathol Exp Neurol 58(6):628–636

    Article  PubMed  CAS  Google Scholar 

  10. Calcutt NA, Freshwater JD, Mizisin AP (2004) Prevention of sensory disorders in diabetic Sprague–Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia 47(4):718–724

    Article  PubMed  CAS  Google Scholar 

  11. Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251(1):27–33

    Article  PubMed  CAS  Google Scholar 

  12. Calcutt NA, Muir D, Powell HC, Mizisin AP (1992) Reduced ciliary neuronotrophic factor-like activity in nerves from diabetic or galactose-fed rats. Brain Res 575(2):320–324

    Article  PubMed  CAS  Google Scholar 

  13. Cameron NE, Cotter MA, Low PA (1991) Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 261(1 Pt 1):E1–E8

    PubMed  CAS  Google Scholar 

  14. Cameron NE, Jack AM, Cotter MA (2001) Effect of alpha-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic Biol Med 31(1):125–135

    Article  PubMed  CAS  Google Scholar 

  15. Cermenati G, Abbiati F, Cermenati S, Brioschi E, Volonterio A, Cavaletti G, Saez E, De Fabiani E, Crestani M, Garcia-Segura LM, Melcangi RC, Caruso D, Mitro N (2012) Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res 53(2):300–310

    Article  PubMed  CAS  Google Scholar 

  16. Conti AM, Malosio ML, Scarpini E, Di Giulio AM, Scarlato G, Mantegazza P, Gorio A (1993) Myelin protein transcripts increase in experimental diabetic neuropathy. Neurosci Lett 161(2):203–206

    Article  PubMed  CAS  Google Scholar 

  17. Conti AM, Scarpini E, Malosio ML, Di Giulio AM, Baron P, Scarlato G, Mantegazza P, Gorio A (1996) In situ hybridization study of myelin protein mRNA in rats with an experimental diabetic neuropathy. Neurosci Lett 207(1):65–69

    Article  PubMed  CAS  Google Scholar 

  18. Cooper ME, Allen TJ, Jerums G, Doyle AE (1986) Accelerated progression of diabetic nephropathy in the spontaneously hypertensive streptozotocin diabetic rat. Clin Exp Pharmacol Physiol 13(9):655–662

    Article  PubMed  CAS  Google Scholar 

  19. Degoute C-S (2007) Controlled hypotension: a guide to drug choice. Drugs 67(7):1053–1076

    Article  PubMed  CAS  Google Scholar 

  20. Eckersley L (2002) Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 50:293–321

    Article  PubMed  CAS  Google Scholar 

  21. Edwards L, Ring C, McIntyre D, Winer JB, Martin U (2008) Cutaneous sensibility and peripheral nerve function in patients with unmedicated essential hypertension. Psychophysiology 45(1):141–147

    PubMed  Google Scholar 

  22. Elliott J, Tesfaye S, Chaturvedi N, Gandhi RA, Stevens LK, Emery C, Fuller JH (2009) Large-fiber dysfunction in diabetic peripheral neuropathy is predicted by cardiovascular risk factors. Diabetes Care 32(10):1896–1900

    Article  PubMed  CAS  Google Scholar 

  23. Forrest KY, Maser RE, Pambianco G, Becker DJ, Orchard TJ (1997) Hypertension as a risk factor for diabetic neuropathy: a prospective study. Diabetes 46(4):665–670

    Article  PubMed  CAS  Google Scholar 

  24. Hainsworth AH, Markus HS (2008) Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 28(12):1877–1891

    Article  PubMed  Google Scholar 

  25. Hall SM (1983) The response of the (myelinating) Schwann cell population to multiple episodes of demyelination. J Neurocytol 12(1):1–12

    Article  PubMed  CAS  Google Scholar 

  26. Harris M, Eastman R, Cowie C (1993) Symptoms of sensory neuropathy in adults with NIDDM in the US population. Diabetes Care 16(11):1446–1452

    Article  PubMed  CAS  Google Scholar 

  27. Hendley ED, Cierpial MA, McCarty R (1988) Sympathetic-adrenal medullary response to stress in hyperactive and hypertensive rats. Physiol Behav 44(1):47–51

    Article  PubMed  CAS  Google Scholar 

  28. Jakobsen J (1976) Axonal dwindling in early experimental diabetes. I. A study of cross sectioned nerves. Diabetologia 12(6):539–546

    Article  PubMed  CAS  Google Scholar 

  29. Jarmuzewska EA, Ghidoni A, Mangoni AA (2007) Hypertension and sensorimotor peripheral neuropathy in type 2 diabetes. Eur Neurol 57(2):91–95

    Article  PubMed  CAS  Google Scholar 

  30. Kalichman MW, Powell HC, Mizisin AP (1998) Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol 95(1):47–56

    Article  PubMed  CAS  Google Scholar 

  31. Kamiya H, Murakawa Y, Zhang W, Sima AAF (2005) Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev 21(5):448–458

    Article  PubMed  CAS  Google Scholar 

  32. Kawashima R, Kojima H, Nakamura K, Arahata A, Fujita Y, Tokuyama Y, Saito T, Furudate S-I, Kurihara T, Yagishita S, Kitamura K, Tamai Y (2007) Alterations in mRNA expression of myelin proteins in the sciatic nerves and brains of streptozotocin-induced diabetic rats. Neurochem Res 32(6):1002–1010

    Article  PubMed  CAS  Google Scholar 

  33. Kennedy JM, Zochodne DW (2005) Experimental diabetic neuropathy with spontaneous recovery: is there irreparable damage? Diabetes 54(3):830–837

    Article  PubMed  CAS  Google Scholar 

  34. Kennedy WR, Wendelschafer-Crabb G, Johnson T (1996) Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47(4):1042–1048

    Article  PubMed  CAS  Google Scholar 

  35. Koistinaho J, Wadhwani KC, Rapoport SI (1989) Increased density of perivascular adrenergic innervation in tibial and vagus nerves of spontaneously hypertensive rats. J Neurosci Res 24(3):424–430

    Article  PubMed  CAS  Google Scholar 

  36. Kursula P (2008) Structural properties of proteins specific to the myelin sheath. Amino Acids 34(2):175–185

    Article  PubMed  CAS  Google Scholar 

  37. Malmberg AB, Mizisin AP, Calcutt NA, von Stein T, Robbins WR, Bley KR (2004) Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch. Pain 111(3):360–367

    Article  PubMed  CAS  Google Scholar 

  38. Maser RE, Steenkiste AR, Dorman JS, Nielsen VK, Bass EB, Manjoo Q, Drash AL, Becker DJ, Kuller LH, Greene DA (1989) Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes 38(11):1456–1461

    Article  PubMed  CAS  Google Scholar 

  39. Mizisin AP, Calcutt NA, DiStefano PS, Acheson A, Longo FM (1997) Aldose reductase inhibition increases CNTF-like bioactivity and protein in sciatic nerves from galactose-fed and normal rats. Diabetes 46(4):647–652

    Article  PubMed  CAS  Google Scholar 

  40. Mizisin AP, Nelson RW, Sturges BK, Vernau KM, Lecouteur RA, Williams DC, Burgers ML, Shelton GD (2007) Comparable myelinated nerve pathology in feline and human diabetes mellitus. Acta Neuropathol 113(4):431–442

    Article  PubMed  Google Scholar 

  41. Mizisin AP, Powell HC (1993) Schwann cell injury is attenuated by aldose reductase inhibition in galactose intoxication. J Neuropathol Exp Neurol 52(1):78–86

    Article  PubMed  CAS  Google Scholar 

  42. Paton JFR, Waki H (2009) Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev 33(2):89–94

    Article  PubMed  CAS  Google Scholar 

  43. Pirart J (1977) Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973 (author’s transl). Diabetes Metab 3(2):97–107

    CAS  Google Scholar 

  44. Pop-Busui R, Herman WH, Feldman EL, Low PA, Martin CL, Cleary PA, Waberski BH, Lachin JM, Albers JW (2010) DCCT and EDIC studies in type 1 diabetes: lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr Diab Rep 10(4):276–282

    Article  PubMed  Google Scholar 

  45. Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, Marshall A, Boulton AJM, Efron N, Malik RA (2007) Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56(8):2148–2154

    Article  PubMed  CAS  Google Scholar 

  46. Sabbatini M, Bellagamba G, Vega JA, Amenta F (2001) Effect of antihypertensive treatment on peripheral nerve vasculature in spontaneously hypertensive rats. Clin Exp Hypertens 23(1–2):157–166

    Article  PubMed  CAS  Google Scholar 

  47. Sabbatini M, Vega JA, Amenta F (1996) Peripheral nerve vascular changes in spontaneously hypertensive rats. Neurosci Lett 217(2–3):85–88

    Article  PubMed  CAS  Google Scholar 

  48. Sharma AK, Thomas PK (1974) Peripheral nerve structure and function in experimental diabetes. J Neurol Sci 23(1):1–15

    Article  PubMed  CAS  Google Scholar 

  49. Sima AA, Zhang W, Xu G, Sugimoto K, Guberski D, Yorek MA (2000) A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats. Diabetologia 43(6):786–793

    Article  PubMed  CAS  Google Scholar 

  50. Smith KJ, Blakemore WF, Murray JA, Patterson RC (1982) Internodal myelin volume and axon surface area. A relationship determining myelin thickness? J Neurol Sci 55(2):231–246

    Article  PubMed  CAS  Google Scholar 

  51. Somani P, Singh HP, Saini RK, Rabinovitch A (1979) Streptozotocin-induced diabetes in the spontaneously hypertensive rat. Metabolism 28(11):1075–1077

    Article  PubMed  CAS  Google Scholar 

  52. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10):2285–2293

    Article  PubMed  Google Scholar 

  53. Tesfaye S, Chaturvedi N, Eaton SEM, Ward JD, Manes C, Ionescu-Tirgoviste C, Witte DR, Fuller JH (2005) Vascular risk factors and diabetic neuropathy. N Engl J Med 352(4):341–350

    Article  PubMed  CAS  Google Scholar 

  54. Tomassoni D, Traini E, Vitaioli L, Amenta F (2004) Morphological and conduction changes in the sciatic nerve of spontaneously hypertensive rats. Neurosci Lett 362(2):131–135

    Article  PubMed  CAS  Google Scholar 

  55. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9(1):36–45

    Article  PubMed  CAS  Google Scholar 

  56. Tomlinson KC, Gardiner SM, Bennett T (1990) Blood pressure in streptozotocin-treated Brattleboro and Long-Evans rats. Am J Physiol 258(4 Pt 2):R852–R859

    PubMed  CAS  Google Scholar 

  57. Tsutsu N, Takata Y, Nunoi K, Kikuchi M, Takishita S, Sadoshima S, Fujishima M (1989) Glucose tolerance and insulin secretion in conscious and unrestrained normotensive and spontaneously hypertensive rats. Metabolism 38(1):63–66

    Article  PubMed  CAS  Google Scholar 

  58. Tuck RR, Schmelzer JD, Low PA (1984) Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain 107:935–950

    Article  PubMed  Google Scholar 

  59. Walker D, Carrington A, Cannan SA, Sawicki D, Sredy J, Boulton AJ, Malik RA (1999) Structural abnormalities do not explain the early functional abnormalities in the peripheral nerves of the streptozotocin diabetic rat. J Anat 195(Pt 3):419–427

    Article  PubMed  Google Scholar 

  60. Xu XJ, Plesan A, Yu W, Hao JX, Wiesenfeld-Hallin Z (2001) Possible impact of genetic differences on the development of neuropathic pain-like behaviors after unilateral sciatic nerve ischemic injury in rats. Pain 89(2–3):135–145

    Article  PubMed  CAS  Google Scholar 

  61. Zhu Y-L, Xie Z-L, Wu Y-W, Duan W-R, Xie Y-K (2012) Early demyelination of primary A-fibers induces as rapid onset of neuropathic pain in rat. Neuroscience 200:186–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our thanks to Dr. Debbie Chen, Mr. Victor Arballo and Ms. Sandra Myskowski for technical assistance. Supported by NIH grant DK-057629 (NAC) and JDRF Career Development Award (CGJ). The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel A. Calcutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, J.A., Jolivalt, C.G., Goor, J. et al. Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats. Acta Neuropathol 124, 561–573 (2012). https://doi.org/10.1007/s00401-012-1012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1012-6

Keywords

Navigation