Skip to main content

Advertisement

Log in

Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Mitochondria are dynamic organelles which are essential for many cellular processes, such as ATP production by oxidative phosphorylation, lipid metabolism, assembly of iron sulfur clusters, regulation of calcium homeostasis, and cell death pathways. The dynamic changes in mitochondrial morphology, connectivity, and subcellular distribution are critically dependent on a highly regulated fusion and fission machinery. Mitochondrial function, dynamics, and quality control are vital for the maintenance of neuronal integrity. Indeed, there is mounting evidence that mitochondrial dysfunction plays a central role in several neurodegenerative diseases. In particular, the identification of genes linked to rare familial variants of Parkinson’s disease has fueled research on mitochondrial aspects of the disease etiopathogenesis. Studies on the function of parkin and PINK1, which are associated with autosomal recessive parkinsonism, provided compelling evidence that these proteins can functionally interact to maintain mitochondrial integrity and to promote clearance of damaged and dysfunctional mitochondria. In this review we will summarize current knowledge about the impact of parkin and PINK1 on mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    PubMed  CAS  Google Scholar 

  2. Alexander C, Votruba M, Pesch UE et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215

    PubMed  CAS  Google Scholar 

  3. Behrends C, Harper JW (2011) Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18:520–528

    PubMed  CAS  Google Scholar 

  4. Beilina A, Van Der Brug M, Ahmad R et al (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 102:5703–5708

    PubMed  CAS  Google Scholar 

  5. Benard G, Karbowski M (2009) Mitochondrial fusion and division: regulation and role in cell viability. Semin Cell Dev Biol 20:365–374

    PubMed  CAS  Google Scholar 

  6. Berger AK, Cortese GP, Amodeo KD et al (2009) Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum Mol Genet 18:4317–4328

    PubMed  CAS  Google Scholar 

  7. Bogaerts V, Theuns J, van Broeckhoven C (2008) Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav 7:129–151

    PubMed  CAS  Google Scholar 

  8. Bouman L, Schlierf A, Lutz AK et al (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18:769–782

    PubMed  CAS  Google Scholar 

  9. Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  10. Bueler H (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis 15:1336–1353

    PubMed  Google Scholar 

  11. Burbulla LF, Krebiehl G, Kruger R (2010) Balance is the challenge—the impact of mitochondrial dynamics in Parkinson’s disease. Eur J Clin Invest 40:1048–1060

    PubMed  CAS  Google Scholar 

  12. Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64:485–491

    PubMed  Google Scholar 

  13. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    PubMed  CAS  Google Scholar 

  14. Cerveny KL, Jensen RE (2003) The WD-repeats of Net2p interact with Dnm1p and Fis1p to regulate division of mitochondria. Mol Biol Cell 14:4126–4139

    PubMed  CAS  Google Scholar 

  15. Cha GH, Kim S, Park J et al (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci USA 102:10345–10350

    PubMed  CAS  Google Scholar 

  16. Chan NC, Salazar AM, Pham AH et al (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737

    PubMed  CAS  Google Scholar 

  17. Chan P, DeLanney LE, Irwin I, Langston JW, Di Monte D (1991) Rapid ATP loss caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in mouse brain. J Neurochem 57:348–351

    PubMed  CAS  Google Scholar 

  18. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    PubMed  CAS  Google Scholar 

  19. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192

    PubMed  CAS  Google Scholar 

  20. Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–562

    PubMed  CAS  Google Scholar 

  21. Chen H, Vermulst M, Wang YE et al (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289

    PubMed  CAS  Google Scholar 

  22. Chu CT (2010) A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet 19:R28–R37

    PubMed  CAS  Google Scholar 

  23. Chung KK, Thomas B, Li X et al (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331

    PubMed  CAS  Google Scholar 

  24. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    PubMed  CAS  Google Scholar 

  25. Cui M, Tang X, Christian WV, Yoon Y, Tieu K (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem 285:11740–11752

    PubMed  CAS  Google Scholar 

  26. Dagda RK, Cherra SJ 3rd, Kulich SM et al (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    PubMed  CAS  Google Scholar 

  27. Darios F, Corti O, Lucking CB et al (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12:517–526

    PubMed  CAS  Google Scholar 

  28. Davis GC, Williams AC, Markey SP et al (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    PubMed  CAS  Google Scholar 

  29. Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord 25(Suppl 1):S32–S39

    PubMed  Google Scholar 

  30. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66:646–661

    PubMed  CAS  Google Scholar 

  31. Deas E, Plun-Favreau H, Gandhi S et al (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20:867–879

    PubMed  CAS  Google Scholar 

  32. Deas E, Plun-Favreau H, Wood NW (2009) PINK1 function in health and disease. EMBO Mol Med 1:152–165

    PubMed  CAS  Google Scholar 

  33. Delettre C, Lenaers G, Griffoin JM et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210

    PubMed  CAS  Google Scholar 

  34. Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 105:14503–14508

    PubMed  CAS  Google Scholar 

  35. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    PubMed  CAS  Google Scholar 

  36. Ding WX, Ni HM, Li M et al (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285:27879–27890

    PubMed  CAS  Google Scholar 

  37. Ekstrand MI, Terzioglu M, Galter D et al (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 104:1325–1330

    PubMed  CAS  Google Scholar 

  38. Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793:664–673

    PubMed  CAS  Google Scholar 

  39. Exner N, Treske B, Paquet D et al (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27:12413–12418

    PubMed  CAS  Google Scholar 

  40. Fallon L, Belanger CM, Corera AT et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8:834–842

    PubMed  CAS  Google Scholar 

  41. Fett ME, Pilsl A, Paquet D et al (2010) Parkin is protective against proteotoxic stress in a transgenic zebrafish model. PLoS One 5:e11783

    PubMed  Google Scholar 

  42. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  CAS  Google Scholar 

  43. Gandhi S, Wood-Kaczmar A, Yao Z et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638

    PubMed  CAS  Google Scholar 

  44. Garcia-Arencibia M, Hochfeld WE, Toh PP, Rubinsztein DC (2010) Autophagy, a guardian against neurodegeneration. Semin Cell Dev Biol 21:691–698

    PubMed  CAS  Google Scholar 

  45. Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 105:11364–11369

    PubMed  CAS  Google Scholar 

  46. Gegg ME, Cooper JM, Chau KY et al (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    PubMed  CAS  Google Scholar 

  47. Geisler S, Holmstrom KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    PubMed  CAS  Google Scholar 

  48. Geisler S, Holmstrom KM, Treis A et al (2010) The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6:871–878

    PubMed  CAS  Google Scholar 

  49. Gispert S, Ricciardi F, Kurz A et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One 4:e5777

    PubMed  Google Scholar 

  50. Glauser L, Sonnay S, Stafa K, Moore DJ (2011) Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 118:636–645

    PubMed  CAS  Google Scholar 

  51. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598

    PubMed  CAS  Google Scholar 

  52. Greene JC, Whitworth AJ, Kuo I et al (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100:4078–4083

    PubMed  CAS  Google Scholar 

  53. Grunewald A, Gegg ME, Taanman JW et al (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp Neurol 219:266–273

    PubMed  CAS  Google Scholar 

  54. Grunewald A, Voges L, Rakovic A et al (2010) Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS One 5:e12962

    PubMed  Google Scholar 

  55. Haque ME, Thomas KJ, D’Souza C et al (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA 105:1716–1721

    PubMed  CAS  Google Scholar 

  56. Hardy J (2010) Genetic analysis of pathways to Parkinson disease. Neuron 68:201–206

    PubMed  CAS  Google Scholar 

  57. Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C (2009) The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 19:254–265

    PubMed  CAS  Google Scholar 

  58. Hasegawa T, Treis A, Patenge N et al (2008) Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J Neurochem 105:1700–1715

    PubMed  CAS  Google Scholar 

  59. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    PubMed  CAS  Google Scholar 

  60. Henn IH, Bouman L, Schlehe JS et al (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878

    PubMed  CAS  Google Scholar 

  61. Higashi Y, Asanuma M, Miyazaki I et al (2004) Parkin attenuates manganese-induced dopaminergic cell death. J Neurochem 89:1490–1497

    PubMed  CAS  Google Scholar 

  62. Hoepken HH, Gispert S, Morales B et al (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25:401–411

    PubMed  CAS  Google Scholar 

  63. Hoppins S, Nunnari J (2009) The molecular mechanism of mitochondrial fusion. Biochim Biophys Acta 1793:20–26

    PubMed  CAS  Google Scholar 

  64. Hristova VA, Beasley SA, Rylett RJ, Shaw GS (2009) Identification of a novel Zn2+ -binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J Biol Chem 284:14978–14986

    PubMed  CAS  Google Scholar 

  65. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9:536–542

    PubMed  CAS  Google Scholar 

  66. Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275:35661–35664

    PubMed  CAS  Google Scholar 

  67. Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    PubMed  CAS  Google Scholar 

  68. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177

    PubMed  CAS  Google Scholar 

  69. Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754

    PubMed  CAS  Google Scholar 

  70. Jin SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    PubMed  CAS  Google Scholar 

  71. Karbowski M, Youle RJ (2011) Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol 23:476–482

    PubMed  CAS  Google Scholar 

  72. Kawaguchi Y, Kovacs JJ, McLaurin A et al (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    PubMed  CAS  Google Scholar 

  73. Kawajiri S, Saiki S, Sato S, Hattori N (2011) Genetic mutations and functions of PINK1. Trends Pharmacol Sci 32:573–580

    PubMed  CAS  Google Scholar 

  74. Kawajiri S, Saiki S, Sato S et al (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584:1073–1079

    PubMed  CAS  Google Scholar 

  75. Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    PubMed  CAS  Google Scholar 

  76. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    PubMed  CAS  Google Scholar 

  77. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    PubMed  CAS  Google Scholar 

  78. Kitada T, Pisani A, Porter DR et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446

    PubMed  CAS  Google Scholar 

  79. Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111:696–702

    PubMed  CAS  Google Scholar 

  80. Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci 1147:283–292

    PubMed  CAS  Google Scholar 

  81. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518

    PubMed  CAS  Google Scholar 

  82. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953

    PubMed  CAS  Google Scholar 

  83. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    PubMed  CAS  Google Scholar 

  84. Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12:836–841

    PubMed  CAS  Google Scholar 

  85. Lamark T, Kirkin V, Dikic I, Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986–1990

    PubMed  CAS  Google Scholar 

  86. Landes T, Leroy I, Bertholet A et al (2010) OPA1 (dys)functions. Semin Cell Dev Biol 21:593–598

    PubMed  CAS  Google Scholar 

  87. Lang AE, Obeso JA (2004) Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 3:309–316

    PubMed  Google Scholar 

  88. Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. N Engl J Med 309:310

    PubMed  CAS  Google Scholar 

  89. Langston JW, Forno LS, Tetrud J et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    PubMed  CAS  Google Scholar 

  90. LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG (2007) The effects of oxidative stress on parkin and other E3 ligases. J Neurochem 103:2354–2368

    PubMed  CAS  Google Scholar 

  91. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221

    PubMed  CAS  Google Scholar 

  92. Lee JY, Koga H, Kawaguchi Y et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    PubMed  CAS  Google Scholar 

  93. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189:671–679

    PubMed  CAS  Google Scholar 

  94. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    PubMed  CAS  Google Scholar 

  95. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    PubMed  CAS  Google Scholar 

  96. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    PubMed  CAS  Google Scholar 

  97. Lin W, Kang UJ (2008) Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 106:464–474

    PubMed  CAS  Google Scholar 

  98. Lin W, Kang UJ (2010) Structural determinants of PINK1 topology and dual subcellular distribution. BMC Cell Biol 11:90

    PubMed  Google Scholar 

  99. Livnat-Levanon N, Glickman MH (2011) Ubiquitin-proteasome system and mitochondria—reciprocity. Biochim Biophys Acta 1809:80–87

    PubMed  CAS  Google Scholar 

  100. Lo Bianco C, Schneider BL, Bauer M et al (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci USA 101:17510–17515

    PubMed  CAS  Google Scholar 

  101. Lutz AK, Exner N, Fett ME et al (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284:22938–22951

    PubMed  CAS  Google Scholar 

  102. Magen I, Chesselet MF (2010) Genetic mouse models of Parkinson’s disease The state of the art. Prog Brain Res 184:53–87

    PubMed  CAS  Google Scholar 

  103. Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120:1707–1716

    PubMed  CAS  Google Scholar 

  104. Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311:464–467

    PubMed  CAS  Google Scholar 

  105. Martin I, Dawson VL, Dawson TM (2011) Recent Advances in the Genetics of Parkinson’s Disease. Annual Review of Genomics and Human Genetics 12: null

  106. Martinelli P, Rugarli EI (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta 1797:1–10

    PubMed  CAS  Google Scholar 

  107. Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    PubMed  CAS  Google Scholar 

  108. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    PubMed  CAS  Google Scholar 

  109. Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117:856–867

    PubMed  CAS  Google Scholar 

  110. Mendez I, Vinuela A, Astradsson A et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14:507–509

    PubMed  CAS  Google Scholar 

  111. Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791–2804

    PubMed  CAS  Google Scholar 

  112. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    PubMed  CAS  Google Scholar 

  113. Moore DJ (2006) Parkin: a multifaceted ubiquitin ligase. Biochem Soc Trans 34:749–753

    PubMed  CAS  Google Scholar 

  114. Morais VA, Verstreken P, Roethig A et al (2009) Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 1:99–111

    PubMed  CAS  Google Scholar 

  115. Mortiboys H, Thomas KJ, Koopman WJ et al (2008) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 64:555–565

    PubMed  CAS  Google Scholar 

  116. Muqit MM, Davidson SM, Payne Smith MD et al (2004) Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin’s effect on neuronal survival. Hum Mol Genet 13:117–135

    PubMed  CAS  Google Scholar 

  117. Nakada K, Inoue K, Ono T et al (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 7:934–940

    PubMed  CAS  Google Scholar 

  118. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106

    PubMed  CAS  Google Scholar 

  119. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    PubMed  CAS  Google Scholar 

  120. Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    PubMed  Google Scholar 

  121. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. Life Sci 36:2503–2508

    PubMed  CAS  Google Scholar 

  122. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    PubMed  CAS  Google Scholar 

  123. Obeso JA, Rodriguez-Oroz MC, Goetz CG et al (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    PubMed  CAS  Google Scholar 

  124. Okatsu K, Saisho K, Shimanuki M et al (2010) p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes Cells 15:887–900

    PubMed  CAS  Google Scholar 

  125. Palacino JJ, Sagi D, Goldberg MS et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    PubMed  CAS  Google Scholar 

  126. Park J, Lee G, Chung J (2009) The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem Biophys Res Commun 378:518–523

    PubMed  CAS  Google Scholar 

  127. Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    PubMed  CAS  Google Scholar 

  128. Petrucelli L, O’Farrell C, Lockhart PJ et al (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36:1007–1019

    PubMed  CAS  Google Scholar 

  129. Plun-Favreau H, Klupsch K, Moisoi N et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252

    PubMed  CAS  Google Scholar 

  130. Poole AC, Thomas RE, Andrews LA et al (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643

    PubMed  CAS  Google Scholar 

  131. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One 5:e10054

    PubMed  Google Scholar 

  132. Pridgeon JW, Olzmann JA, Chin LS, Li L (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5:e172

    PubMed  Google Scholar 

  133. Przedborski S, Jackson-Lewis V, Yokoyama R et al (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA 93:4565–4571

    PubMed  CAS  Google Scholar 

  134. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108:10190–10195

    PubMed  CAS  Google Scholar 

  135. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53

    PubMed  CAS  Google Scholar 

  136. Rosen KM, Veereshwarayya V, Moussa CE et al (2006) Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells. J Biol Chem 281:12809–12816

    PubMed  CAS  Google Scholar 

  137. Sandebring A, Thomas KJ, Beilina A et al (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS One 4:e5701

    PubMed  Google Scholar 

  138. Satake W, Nakabayashi Y, Mizuta I et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307

    PubMed  CAS  Google Scholar 

  139. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813:1269–1278

    PubMed  CAS  Google Scholar 

  140. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    PubMed  CAS  Google Scholar 

  141. Schapira AH, Cooper JM, Dexter D et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    PubMed  CAS  Google Scholar 

  142. Schlehe JS, Lutz AK, Pilsl A et al (2008) Aberrant folding of pathogenic Parkin mutants: aggregation versus degradation. J Biol Chem 283:13771–13779

    PubMed  CAS  Google Scholar 

  143. Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70:1033–1053

    PubMed  CAS  Google Scholar 

  144. Seibler P, Graziotto J, Jeong H et al (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31:5970–5976

    PubMed  CAS  Google Scholar 

  145. Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet 19:352–363

    PubMed  CAS  Google Scholar 

  146. Shi G, Lee JR, Grimes DA et al (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet 20:1966–1974

    PubMed  CAS  Google Scholar 

  147. Shiba K, Arai T, Sato S et al (2009) Parkin stabilizes PINK1 through direct interaction. Biochem Biophys Res Commun 383:331–335

    PubMed  CAS  Google Scholar 

  148. Shin JH, Ko HS, Kang H et al (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702

    PubMed  CAS  Google Scholar 

  149. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222

    PubMed  CAS  Google Scholar 

  150. Silvestri L, Caputo V, Bellacchio E et al (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492

    PubMed  CAS  Google Scholar 

  151. Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312

    PubMed  CAS  Google Scholar 

  152. Soubannier V, McBride HM (2009) Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta 1793:154–170

    PubMed  CAS  Google Scholar 

  153. Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    PubMed  CAS  Google Scholar 

  154. Staropoli JF, McDermott C, Martinat C et al (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37:735–749

    PubMed  CAS  Google Scholar 

  155. Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci USA 108:12937–12942

    PubMed  CAS  Google Scholar 

  156. Tain LS, Chowdhury RB, Tao RN et al (2009) Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ 16:1118–1125

    PubMed  CAS  Google Scholar 

  157. Takatori S, Ito G, Iwatsubo T (2008) Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 430:13–17

    PubMed  CAS  Google Scholar 

  158. Tan EK, Puong KY, Chan DK et al (2005) Impaired transcriptional upregulation of Parkin promoter variant under oxidative stress and proteasomal inhibition: clinical association. Hum Genet 118:484–488

    PubMed  CAS  Google Scholar 

  159. Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    PubMed  CAS  Google Scholar 

  160. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    PubMed  CAS  Google Scholar 

  161. Terzioglu M, Galter D (2008) Parkinson’s disease: genetic versus toxin-induced rodent models. Febs J 275:1384–1391

    PubMed  CAS  Google Scholar 

  162. Thomas KJ, Cookson MR (2009) The role of PTEN-induced kinase 1 in mitochondrial dysfunction and dynamics. Int J Biochem Cell Biol 41:2025–2035

    PubMed  CAS  Google Scholar 

  163. Tondera D, Grandemange S, Jourdain A et al (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–1600

    PubMed  CAS  Google Scholar 

  164. Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    PubMed  CAS  Google Scholar 

  165. Ulusoy A, Kirik D (2008) Can overexpression of parkin provide a novel strategy for neuroprotection in Parkinson’s disease? Exp Neurol 212:258–260

    PubMed  CAS  Google Scholar 

  166. Um JW, Stichel-Gunkel C, Lubbert H, Lee G, Chung KC (2009) Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci 40:421–432

    PubMed  CAS  Google Scholar 

  167. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    PubMed  CAS  Google Scholar 

  168. Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with ambra1 to induce mitophagy. J Neurosci 31:10249–10261

    PubMed  Google Scholar 

  169. Van Laar VS, Arnold B, Cassady SJ et al (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet 20:927–940

    PubMed  Google Scholar 

  170. Van Laar VS, Berman SB (2009) Mitochondrial dynamics in Parkinson’s disease. Exp Neurol 218:247–256

    PubMed  Google Scholar 

  171. Vila M, Ramonet D, Perier C (2008) Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 107:317–328

    PubMed  CAS  Google Scholar 

  172. Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    PubMed  CAS  Google Scholar 

  173. Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    PubMed  CAS  Google Scholar 

  174. Wang C, Ko HS, Thomas B et al (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 14:3885–3897

    PubMed  CAS  Google Scholar 

  175. Wang H, Song P, Du L et al (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658

    PubMed  CAS  Google Scholar 

  176. Weihofen A, Ostaszewski B, Minami Y, Selkoe DJ (2008) Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet 17:602–616

    PubMed  CAS  Google Scholar 

  177. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48:2045–2052

    PubMed  CAS  Google Scholar 

  178. Wenz T (2009) PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life 61:1051–1062

    PubMed  CAS  Google Scholar 

  179. Whitworth AJ, Lee JR, Ho VM et al (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 1:168–174 discussion 173

    PubMed  CAS  Google Scholar 

  180. Winklhofer KF (2007) The parkin protein as a therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 11:1543–1552

    PubMed  CAS  Google Scholar 

  181. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    PubMed  CAS  Google Scholar 

  182. Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J (2003) Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem 278:47199–47208

    PubMed  CAS  Google Scholar 

  183. Winklhofer KF, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27:336–349

    PubMed  CAS  Google Scholar 

  184. Wong ES, Tan JM, Wang C et al (2007) Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J Biol Chem 282:12310–12318

    PubMed  CAS  Google Scholar 

  185. Wood-Kaczmar A, Gandhi S, Yao Z et al (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 3:e2455

    PubMed  Google Scholar 

  186. Yamaguchi R, Perkins G (2009) Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1. Biochim Biophys Acta 1787:963–972

    PubMed  CAS  Google Scholar 

  187. Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci USA 103:10793–10798

    PubMed  CAS  Google Scholar 

  188. Yang Y, Ouyang Y, Yang L et al (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105:7070–7075

    PubMed  CAS  Google Scholar 

  189. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    PubMed  CAS  Google Scholar 

  190. Yao D, Gu Z, Nakamura T et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814

    PubMed  CAS  Google Scholar 

  191. Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286:19630–19640

    PubMed  CAS  Google Scholar 

  192. Yun J, Cao JH, Dodson MW et al (2008) Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. J Neurosci 28:14500–14510

    PubMed  CAS  Google Scholar 

  193. Zhou C, Huang Y, Shao Y et al (2008) The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci USA 105:12022–12027

    PubMed  CAS  Google Scholar 

  194. Zhou H, Falkenburger BH, Schulz JB et al (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3:242–250

    PubMed  CAS  Google Scholar 

  195. Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 107:5018–5023

    PubMed  CAS  Google Scholar 

  196. Zuchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Daniela Vogt Weisenhorn and Wolfgang Wurst for providing mouse embryonic fibroblasts from PINK1 KO mice. K.F.W. is supported by the Deutsche Forschungsgemeinschaft (SFB 596 “Molecular Mechanisms of Neurodegeneration”), the German Ministry for Education and Research (NGFN plus “Functional Genomics of Parkinson’s Disease”), the Helmholtz Alliance “Mental Health in an Ageing Society”, and the German Center for Neurodegenerative Diseases (DZNE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstanze F. Winklhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilsl, A., Winklhofer, K.F. Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson’s disease. Acta Neuropathol 123, 173–188 (2012). https://doi.org/10.1007/s00401-011-0902-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0902-3

Keywords

Navigation