Skip to main content


Log in

Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript


Brain metastases (BM) are frequent and carry a dismal prognosis. BRAF V600E mutations are found in a broad range of tumor types and specific inhibitors targeting BRAF V600E protein exist. We analyzed tumoral BRAF V600E-mutant protein expression using the novel mutation-specific antibody VE1 in a series of 1,120 tumor specimens (885 BM, 157 primary tumors, 78 extra-cranial metastases) of 874 BM patients. In 85 cases, we performed validation of immunohistochemical results by BRAF exon 15 gene sequencing. BRAF V600E protein was expressed in BM of 42/76 (55.3%) melanomas, 1/15 (6.7%) ovarian cancers, 4/72 (5.5%) colorectal cancers, 1/355 (0.3%) lung cancers, 2/6 thyroid cancers and 1/2 choriocarcinomas. BRAF V600E expression showed high intra-tumoral homogeneity and was similar in different tumor manifestations of individual patients. VE1 immunohistochemistry and BRAF exon 15 sequencing were congruent in 68/70 (97.1%) cases, but VE1 immunostaining identified small BRAF V600E expressing tumor cell aggregates in 10 cases with inconclusive genetic results. Melanoma patients with BRAF V600E mutant protein expressing tumors were significantly younger at diagnosis of the primary tumor and at operation of BM than patients with non-mutated tumors. In conclusion, expression of BRAF V600E mutant protein occurs in approximately 6% of BM and is consistent in different tumor manifestations of the same patient. Thus, BRAF V600E inhibiting therapies seem feasible in selected BM patients. Immunohistochemical visualization of V600E-mutant BRAF protein is a promising tool for patient stratification. An integrated approach combining both, VE1 immunohistochemistry and genetic analysis may increase the diagnostic accuracy of BRAF mutation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Arcila M, Lau C, Nafa K, Ladanyi M (2011) Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn 13:64–73

    Article  PubMed  CAS  Google Scholar 

  2. Capper D, Preusser M, Habel A et al (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122:11–19

    Article  PubMed  CAS  Google Scholar 

  3. Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254

    Article  PubMed  CAS  Google Scholar 

  4. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    Article  PubMed  CAS  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed  CAS  Google Scholar 

  6. Edlundh-Rose E, Egyhazi S, Omholt K et al (2006) NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res 16:471–478

    Article  PubMed  CAS  Google Scholar 

  7. Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  PubMed  CAS  Google Scholar 

  8. Forbes SA, Bhamra G, Bamford S et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet Chapter 10:Unit 10 11

  9. Kamar FG, Posner JB (2010) Brain metastases. Semin Neurol 30:217–235

    Article  PubMed  Google Scholar 

  10. Kienast Y, Winkler F (2010) Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther 10:1763–1777

    Article  PubMed  Google Scholar 

  11. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    PubMed  CAS  Google Scholar 

  12. Küsters-Vandevelde HV, Klaasen A, Kusters B et al (2010) Activating mutations of the GNAQ gene: a frequent event in primary melanocytic neoplasms of the central nervous system. Acta Neuropathol 119:317–323

    Article  PubMed  Google Scholar 

  13. Long GV, Kefford RF, Carr PJA et al (2010) Phase 1/2 study of GSK2118436, a selective inhibitor of V600 mutant BRAF kinase: evidence of activity in melanoma brain metastases. Ann Oncol LBA27

  14. Long GV, Menzies AM, Nagrial AM et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246

    Article  PubMed  Google Scholar 

  15. Magnin S, Viel E, Baraquin A et al (2011) A multiplex SNaPshot assay as a rapid method for detecting KRAS and BRAF mutations in advanced colorectal cancers. J Mol Diagn 13:485–492

    Article  PubMed  CAS  Google Scholar 

  16. Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29:2046–2051

    Article  PubMed  Google Scholar 

  17. Papadatos-Pastos D, Banerji U (2011) Revisiting the role of molecular targeted therapies in patients with brain metastases. J Neurooncol ISSN: 1573–7373

  18. Platz A, Egyhazi S, Ringborg U, Hansson J (2008) Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 1:395–405

    Article  PubMed  Google Scholar 

  19. Preusser M, Capper D, Hartmann C (2011) IDH testing in diagnostic neuropathology: review and practical guideline article invited by the Euro-CNS research committee. Clin Neuropathol (in press)

  20. Preusser M, Wohrer A, Stary S, Hoftberger R, Streubel B, Hainfellner JA (2011) Value and limitations of immunohistochemistry and gene sequencing for detection of the IDH1–R132H mutation in diffuse glioma biopsy specimens. J Neuropathol Exp Neurol 70:715–723

    Article  PubMed  CAS  Google Scholar 

  21. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1, 320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  PubMed  CAS  Google Scholar 

  22. Singer G, Oldt R 3rd, Cohen Y et al (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486

    Article  PubMed  CAS  Google Scholar 

  23. Tannapfel A, Sommerer F, Benicke M et al (2003) Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52:706–712

    Article  PubMed  CAS  Google Scholar 

  24. Tiacci E, Trifonov V, Schiavoni G et al (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364:2305–2315

    Article  PubMed  CAS  Google Scholar 

  25. Vultur A, Villanueva J, Herlyn M (2011) Targeting BRAF in advanced melanoma: a first step toward manageable disease. Clin Cancer Res 17:1658–1663

    Article  PubMed  CAS  Google Scholar 

  26. Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  27. Wohrer A, Waldhor T, Heinzl H et al (2009) The Austrian brain tumour registry: a cooperative way to establish a population-based brain tumour registry. J Neurooncol 95:401–411

    Article  PubMed  Google Scholar 

  28. Yuen ST, Davies H, Chan TL et al (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62:6451–6455

    PubMed  CAS  Google Scholar 

Download references


Dr. Preusser and this work were supported by a European Association for Neurooncology (EANO) Fellowship Grant. This work was further supported by the Bundesministerium für Bildung und Forschung (BMBF Grant numbers 01GS0883 and 01ES0730). We thank Mrs. Elisabeth Dirnberger and Mrs. Irene Leisser (both Institute of Neurology, Medical University of Vienna) for excellent technical assistance. We are indebted to Dr. Hanswalter Zentgraf (Monoclonal Antibody Unit, German Cancer Research Center, Heidelberg, Germany).

Conflict of interest

Andreas von Deimling and David Capper declare shared inventorship of BRAF antibody clone VE1. A patent for diagnostic application of VE1 has been applied for. All terms are being managed by the German Cancer Research Center in accordance with its conflict of interest policies.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Andreas von Deimling or Matthias Preusser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capper, D., Berghoff, A.S., Magerle, M. et al. Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 123, 223–233 (2012).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: