Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease that affects the central nervous system and represents the most common neurological disorder in young adults in the Western hemisphere. There are several well-characterized experimental animal models that allow studying potential mechanisms of MS pathology. While experimental allergic encephalomyelitis is one of the most frequently used models to investigate MS pathology and therapeutic interventions, the cuprizone model reflects a toxic experimental model. Cuprizone-induced demyelination in animals is accepted for studying MS-related lesions and is characterized by degeneration of oligodendrocytes rather than by a direct attack on the myelin sheet. The present article reviews recent data concerning the cuprizone model and its relevance for MS. Particular focus is given to the concordance and difference between human MS patterns (types I–IV lesions) and cuprizone-induced histopathology, including a detailed description of the sensitive brain regions extending the observations to different white and grey matter structures. Similarities between pattern III lesions and cuprizone-induced demyelination and dissimilarities, such as inflamed blood vessels or the presence of CD3+ T cells, are outlined. We also aim to distinguish acute and chronic demyelination under cuprizone including processes such as spontaneous remyelination during acute demyelination. Finally, we point at strain and gender differences in this animal model and highlight the contribution of some growth factors and cytokines during and after cuprizone intoxication, including LIF, IGF-1, and PDGFα.
Similar content being viewed by others
References
Acs P, Kipp M, Norkute A et al (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814
Allen IV, McQuaid S, Mirakhur M, Nevin G (2001) Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurol Sci 22:141–144
Antonio M, Patrizia F, Ilaria I, Paolo F (2008) A rational approach on the use of sex steroids in multiple sclerosis. Recent Pat CNS Drug Discov 3:34–39
Armstrong RC (2007) Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. Future Neurol 2:689–697
Armstrong RC, Le TQ, Flint NC, Vana AC, Zhou YX (2006) Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol 65:245–256
Arnold S, Beyer C (2009) Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 110:1–11
Back SA, Tuohy TM, Chen H et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972
Baer AS, Syed YA, Kang SU et al (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–481
Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468
Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295
Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin- induced demyelination. Curr Top Microbiol Immunol 318:193–212
Braun A, Dang J, Johann S, Beyer C, Kipp M (2009) Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int
Bruck W (2005) Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J Neurol 252(Suppl 5):v10–v15
Cammer W (1999) The neurotoxicant, cuprizone, retards the differentiation of oligodendrocytes in vitro. J Neurol Sci 168:116–120
Cammer W, Zhang H, Tansey FA (1995) Effects of carbonic anhydrase II (CAII) deficiency on CNS structure and function in the myelin-deficient CAII-deficient double mutant mouse. J Neurosci Res 40:451–457
Carlton WW (1966) Response of mice to the chelating agents sodium diethyldithiocarbamate, alpha-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharmacol 8:512–521
Carlton WW (1967) Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sci 6:11–19
Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173
Cho KH, Kim MW, Kim SU (1997) Tissue culture model of Krabbe’s disease: psychosine cytotoxicity in rat oligodendrocyte culture. Dev Neurosci 19:321–327
Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T (1998) Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med 339:285–291
Copray S, Balasubramaniyan V, Levenga J, de Bruijn J, Liem R, Boddeke E (2006) Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes. Stem Cells 24:1001–1010
Cudd A, Nicolau C (1986) Interaction of intravenously injected liposomes with mouse liver mitochondria. A fluorescence and electron microscopy study. Biochim Biophys Acta 860:201–214
D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13:227–255
Diemel LT, Jackson SJ, Cuzner ML (2003) Role for TGF-beta1, FGF-2 and PDGF-AA in a myelination of CNS aggregate cultures enriched with macrophages. J Neurosci Res 74:858–867
Duquette P, Girard M (1993) Hormonal factors in susceptibility to multiple sclerosis. Curr Opin Neurol Neurosurg 6:195–201
Emerson MR, Biswas S, LeVine SM (2001) Cuprizone and piperonyl butoxide, proposed inhibitors of T-cell function, attenuate experimental allergic encephalomyelitis in SJL mice. J Neuroimmunol 119:205–213
Emery B, Cate HS, Marriott M et al (2006) Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proc Natl Acad Sci USA 103:7859–7864
Flatmark T, Kryvi H, Tangeras A (1980) Induction of megamitochondria by cuprizone (biscyclohexanone oxaldihydrazone). Evidence for an inhibition of the mitochondrial division process. Eur J Cell Biol 23:141–148
Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714
Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L (2006) The value of animal models for drug development in multiple sclerosis. Brain 129:1940–1952
Garcia-Segura LM, Duenas M, Fernandez-Galaz MC et al (1996) Interaction of the signalling pathways of insulin-like growth factor-I and sex steroids in the neuroendocrine hypothalamus. Horm Res 46:160–164
Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851
Gold SM, Voskuhl RR (2009) Estrogen treatment in multiple sclerosis. J Neurol Sci
Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) EGF induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27(8):2032–2043
Groebe A, Clarner T, Baumgartner W, Dang J, Beyer C, Kipp M (2009) Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum 8(3):163–174
Gudi V, Moharregh-Khiabani D, Skripuletz T et al (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138
Harsan LA, Steibel J, Zaremba A et al (2008) Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 28:14189–14201
Hoffmann K, Lindner M, Groticke I, Stangel M, Loscher W (2008) Epileptic seizures and hippocampal damage after cuprizone-induced demyelination in C57BL/6 mice. Exp Neurol 210:308–321
Hoppel CL, Tandler B (1973) Biochemical effects of cuprizone on mouse liver and heart mitochondria. Biochem Pharmacol 22:2311–2318
Irvine KA, Blakemore WF (2006) Age increases axon loss associated with primary demyelination in cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 175:69–76
Jiang F, Frederick TJ, Wood TL (2001) IGF-I synergizes with FGF-2 to stimulate oligodendrocyte progenitor entry into the cell cycle. Dev Biol 232:414–423
Jiao J, Chen DF (2008) Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells 26:1221–1230
Jiao JW, Feldheim DA, Chen DF (2008) Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc Natl Acad Sci USA 105:8778–8783
Jurevics H, Hostettler J, Muse ED et al (2001) Cerebroside synthesis as a measure of the rate of remyelination following cuprizone-induced demyelination in brain. J Neurochem 77:1067–1076
Kida E, Palminiello S, Golabek AA et al (2006) Carbonic anhydrase II in the developing and adult human brain. J Neuropathol Exp Neurol 65:664–674
Kipp M, Beyer C (2009) Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol 30:188–200
Komoly S (2005) Experimental demyelination caused by primary oligodendrocyte dystrophy. Regional distribution of the lesions in the nervous system of mice [corrected]. Ideggyogy Sz 58:40–43
Komoly S, Hudson LD, Webster HD, Bondy CA (1992) Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 89:1894–1898
Komoly S, Jeyasingham MD, Pratt OE, Lantos PL (1987) Decrease in oligodendrocyte carbonic anhydrase activity preceding myelin degeneration in cuprizone induced demyelination. J Neurol Sci 79:141–148
Kornek B, Lassmann H (1999) Axonal pathology in multiple sclerosis. A historical note. Brain Pathol 9:651–656
Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332
Lassmann H (2007) Experimental models of multiple sclerosis. Rev Neurol (Paris) 163:651–655
Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21:242–247
Lassmann H, Bartsch U, Montag D, Schachner M (1997) Dying-back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19:104–110
Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121
Li WW, Penderis J, Zhao C, Schumacher M, Franklin RJ (2006) Females remyelinate more efficiently than males following demyelination in the aged but not young adult CNS. Exp Neurol 202:250–254
Lindner M, Heine S, Haastert K et al (2008) Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol Appl Neurobiol 34:105–114
Lindner M, Fokuhl J, Linsmeier F, Trebst C, Stangel M (2009) Chronic toxic demyelination in the central nervous system leads to axonal damage despite remyelination. Neurosci Lett 453:120–125
Linker RA, Kruse N, Israel S et al (2008) Leukemia inhibitory factor deficiency modulates the immune response and limits autoimmune demyelination: a new role for neurotrophic cytokines in neuroinflammation. J Immunol 180:2204–2213
Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717
Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274
Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 39:597–612
Ludwin SK (1980) Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab Invest 43:382–387
Ludwin SK, Johnson ES (1981) Evidence for a “dying-back” gliopathy in demyelinating disease. Ann Neurol 9:301–305
Mana P, Fordham SA, Staykova MA et al (2009) Demyelination caused by the copper chelator cuprizone halts T cell mediated autoimmune neuroinflammation. J Neuroimmunol 210:13–21
Marriott MP, Emery B, Cate HS et al (2008) Leukemia inhibitory factor signaling modulates both central nervous system demyelination and myelin repair. Glia 56:686–698
Mason JL, Ye P, Suzuki K, D’Ercole AJ, Matsushima GK (2000) Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J Neurosci 20:5703–5708
Messori L, Casini A, Gabbiani C, Sorace L, Muniz-Miranda M, Zatta P (2007) Unravelling the chemical nature of copper cuprizone. Dalton Trans Jun 7;(21):2112–2114
Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21:5–14
Mix E, Meyer-Rienecker H, Zettl UK (2008) Animal models of multiple sclerosis for the development and validation of novel therapies—potential and limitations. J Neurol 255(Suppl 6):7–14
Morell P, Barrett CV, Mason JL et al (1998) Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci 12:220–227
Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC (2005) PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 19:171–182
Norkute A, Hieble A, Braun A et al (2009) Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 87:1343–1355
Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952
Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD (2004) Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 17:174–207
Pasquini LA, Calatayud CA, Bertone Una AL, Millet V, Pasquini JM, Soto EF (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292
Patrikios P, Stadelmann C, Kutzelnigg A et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172
Penderis J, Shields SA, Franklin RJ (2003) Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain 126:1382–1391
Schaumburg HH, Wisniewski HM, Spencer PS (1974) Ultrastructural studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. J Neuropathol Exp Neurol 33:260–284
Shen S, Liu A, Li J, Wolubah C, Casaccia-Bonnefil P (2008) Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol Aging 29:452–463
Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11(9):1024–1034
Sher F, van Dam G, Boddeke E, Copray S (2009) Bioluminescence imaging of Olig2-neural stem cells reveals improved engraftment in a demyelination mouse model. Stem Cells 27:1582–1591
Sicotte NL, Liva SM, Klutch R et al (2002) Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol 52:421–428
Skripuletz T, Bussmann JH, Gudi V et al (2009) Cerebellar cortical demyelination in the murine cuprizone model. Brain Pathol
Snodgress AB, Dorsey CH, Lacey LB (1961) Luxol fast blue staining of degenerating myelinated fibers. Anat Rec 140:83–90
Stangel M, Trebst C (2006) Remyelination strategies: new advancements toward a regenerative treatment in multiple sclerosis. Curr Neurol Neurosci Rep 6:229–235
Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJ (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13:329–339
Taniguchi Y, Amazaki M, Furuyama T et al (2009) Sema4D deficiency results in an increase in the number of oligodendrocytes in healthy and injured mouse brains. J Neurosci Res 87(13):2833–2841
Tansey FA, Zhang H, Cammer W (1996) Expression of carbonic anhydrase II mRNA and protein in oligodendrocytes during toxic demyelination in the young adult mouse. Neurochem Res 21:411–416
Taylor LC, Gilmore W, Matsushima GK (2009) SJL mice exposed to cuprizone intoxication reveal strain and gender pattern differences in demyelination. Brain Pathol 19:467–479
Tedeschi H, Mannella CA, Bowman CL (1987) Patch clamping the outer mitochondrial membrane. J Membr Biol 97:21–29
Torkildsen O, Brunborg LA, Myhr KM, Bo L (2008) The cuprizone model for demyelination. Acta Neurol Scand Suppl 188:72–76
Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC (2007) Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol 66:975–988
Vanderlocht J, Hellings N, Hendriks JJ et al (2006) Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-alpha-induced oligodendrocyte apoptosis. J Neurosci Res 83:763–774
Vanderlocht J, Hendriks JJ, Venken K, Stinissen P, Hellings N (2006) Effects of IFN- beta, leptin and simvastatin on LIF secretion by T lymphocytes of MS patients and healthy controls. J Neuroimmunol 177:189–200
Venturini G (1973) Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem 21:1147–1151
Wakabayashi T, Asano M, Kurono C (1974) Some aspects of mitochondria having a “septum”. J Electron Microsc (Tokyo) 23:247–254
Wekerle H (2008) Lessons from multiple sclerosis: models, concepts, observations. Ann Rheum Dis 67(Suppl 3):iii56–iii60
Woodruff RH, Fruttiger M, Richardson WD, Franklin RJ (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25:252–262
Zatta P, Raso M, Zambenedetti P et al (2005) Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci 62:1502–1513
Acknowledgments
We would like to thank U. Zahn, A. Weth and H. Helten for excellent technical assistance and W. Graulich for assistance in figure preparation. We also acknowledge the suggestions and the help of Prof. W.F. Blakemore, MS Society Cambridge Centre for Myelin Repair, UK. This research project was supported by the START-Program (MK) of the Faculty of Medicine, RWTH Aachen University and the Hertie-Foundation (MK).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kipp, M., Clarner, T., Dang, J. et al. The cuprizone animal model: new insights into an old story. Acta Neuropathol 118, 723–736 (2009). https://doi.org/10.1007/s00401-009-0591-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00401-009-0591-3