Skip to main content

Advertisement

Log in

Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The introduction of immunotherapy and its ultimate success will require re-evaluation of the pathogenesis of Alzheimer’s disease particularly with regard to the role of the ageing microvasculature and the effects of APOE genotype. Arteries in the brain have two major functions (a) delivery of blood and (b) elimination of interstitial fluid and solutes, including amyloid-β (Aβ), along perivascular pathways (lymphatic drainage). Both these functions fail with age and particularly severely in Alzheimer’s disease and vascular dementia. Accumulation of Aβ as plaques in brain parenchyma and artery walls as cerebral amyloid angiopathy (CAA) is associated with failure of perivascular elimination of Aβ from the brain in the elderly and in Alzheimer’s disease. High levels of soluble Aβ in the brain correlate with cognitive decline in Alzheimer’s disease and reflect the failure of perivascular drainage of solutes from the brain and loss of homeostasis of the neuronal environment. Clinically and pathologically, there is a spectrum of disease related to functional failure of the ageing microvasculature with “pure” Alzheimer’s disease at one end of the spectrum and vascular dementia at the other end. Changes in the cerebral microvasculature with age have a potential impact on therapy with cholinesterase inhibitors and especially on immunotherapy that removes Aβ from plaques in the brain, but results in an increase in severity of CAA and no clear improvement in cognition. Drainage of Aβ along perivascular pathways in ageing artery walls may need to be improved to maximise the potential for improvement of cognitive function with immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552. doi:10.1016/j.neuint.2003.11.006

    Article  PubMed  CAS  Google Scholar 

  2. Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17. doi:10.1111/j.1365-2990.1988.tb00862.x

    Article  PubMed  CAS  Google Scholar 

  3. Attems J, Jellinger K (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology—a pilot study. Acta Neuropathol 107:83–90. doi:10.1007/s00401-003-0796-9

    Article  PubMed  Google Scholar 

  4. Attems J, Lintner F, Jellinger KA (2004) Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol 107:283–291. doi:10.1007/s00401-004-0822-6

    Article  PubMed  CAS  Google Scholar 

  5. Attems J, Quass M, Jellinger KA, Lintner F (2007) Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 257:49–55. doi:10.1016/j.jns.2007.01.013

    Article  PubMed  Google Scholar 

  6. Ballard CG, Chalmers KA, Todd C, McKeith IG, O’Brien JT, Wilcock G, Love S, Perry EK (2007) Cholinesterase inhibitors reduce cortical Abeta in dementia with Lewy bodies. Neurology 68:1726–1729. doi:10.1212/01.wnl.0000261920.03297.64

    Article  PubMed  CAS  Google Scholar 

  7. Beach TG (2008) Physiologic origins of age-related beta-amyloid deposition. Neurodegener Dis 5:143–145. doi:10.1159/000113685

    Article  PubMed  CAS  Google Scholar 

  8. Beach TG, Kuo YM, Spiegel K, Emmerling MR, Sue LI, Kokjohn K, Roher AE (2000) The cholinergic deficit coincides with Abeta deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol 59:308–313

    PubMed  CAS  Google Scholar 

  9. Beach TG, Potter PE, Kuo YM, Emmerling MR, Durham RA, Webster SD, Walker DG, Sue LI, Scott S, Layne KJ, Roher AE (2000) Cholinergic deafferentation of the rabbit cortex: a new animal model of Abeta deposition. Neurosci Lett 283:9–12. doi:10.1016/S0304-3940(00)00916-2

    Article  PubMed  CAS  Google Scholar 

  10. Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28:5–11. doi:10.1016/j.it.2006.11.007

    Article  PubMed  CAS  Google Scholar 

  11. Bedford L, Hay D, Paine S, Rezvani N, Mee M, Lowe J, Mayer RJ (2008) Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim Biophys Acta 1782:683–690

    PubMed  CAS  Google Scholar 

  12. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918

    PubMed  CAS  Google Scholar 

  13. Bergsneider M (2001) Evolving concepts of cerebrospinal fluid. Neurosurg Clin N Am 36:631–638

    Google Scholar 

  14. Black S, Gao F, Bilbao J (2008) Understanding white matter disease. Imaging–pathological correlations in vascular cognitive impairment. Stroke [Epub ahead of print]

  15. Boche D, Nicoll JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18:267–278. doi:10.1111/j.1750-3639.2008.00134.x

    Article  PubMed  Google Scholar 

  16. Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C, Nicoll JA (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–3310. doi:10.1093/brain/awn261

    Article  PubMed  CAS  Google Scholar 

  17. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries. Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144. doi:10.1111/j.1365-2990.2007.00926.x

    Article  PubMed  CAS  Google Scholar 

  18. NGoM CFAS (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357:169–175. doi:10.1016/S0140-6736(00)03589-3

    Article  Google Scholar 

  19. Chalmers K, Wilcock G, Love S (2005) Contributors to white matter damage in the frontal lobe in Alzheimer’s disease. Neuropathol Appl Neurobiol 31:623–631. doi:10.1111/j.1365-2990.2005.00678.x

    Article  PubMed  CAS  Google Scholar 

  20. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290. doi:10.1172/JCI25247

    Article  PubMed  CAS  Google Scholar 

  21. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512. doi:10.1016/0167-5699(92)90027-5

    Article  PubMed  CAS  Google Scholar 

  22. Deane R, Zlokovic BV (2007) Role of the blood–brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4:191–197. doi:10.2174/156720507780362245

    Article  PubMed  CAS  Google Scholar 

  23. Domnitz SB, Robbins EM, Hoang AW, Garcia-Alloza M, Hyman BT, Rebeck GW, Greenberg SM, Bacskai BJ, Frosch MP (2005) Progression of cerebral amyloid angiopathy in transgenic mouse models of Alzheimer disease. J Neuropathol Exp Neurol 64:588–594

    PubMed  CAS  Google Scholar 

  24. Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579. doi:10.1016/0361-9230(81)90007-1

    Article  PubMed  CAS  Google Scholar 

  25. Engelhardt B (2008) Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 274:23–26. doi:10.1016/j.jns.2008.05.019

    Article  PubMed  CAS  Google Scholar 

  26. Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD (1999) Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 354:919–920. doi:10.1016/S0140-6736(99)02355-7

    Article  PubMed  CAS  Google Scholar 

  27. Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG (2000) Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol 100:395–402. doi:10.1007/s004010000195

    Article  PubMed  CAS  Google Scholar 

  28. Farkas E, de Vos RA, Donka G, Jansen Steur EN, Mihály A, Luiten PG (2006) Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathol 111:150–157. doi:10.1007/s00401-005-0007-y

    Article  PubMed  Google Scholar 

  29. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G, Esteves F, Wharton SB, Shaw PJ, O’Brien JT, Ince PG (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37:1391–1398. doi:10.1161/01.STR.0000221308.94473.14

    Article  PubMed  Google Scholar 

  30. Ferrer I, Boada Rovira M, Sánchez Guerra ML, Rey MJ, Costa-Jussá F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    PubMed  CAS  Google Scholar 

  31. Ferrer I, Kaste M, Kalimo H Vascular diseases. In: Love S, Louis DN, Ellison DW, editors. Greenfield’s Neuropathology. Eighth ed. London: Hodder Arnold; 2008. p. 121–240.

  32. Fisher A (2008) Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5:433–442. doi:10.1016/j.nurt.2008.05.002

    Article  PubMed  CAS  Google Scholar 

  33. Glenner GG, Wong CW, Quaranta V, Eanes ED (1984) The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl Pathol 2:357–369

    PubMed  CAS  Google Scholar 

  34. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I (2006) T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 80:797–801. doi:10.1189/jlb.0306176

    Article  PubMed  CAS  Google Scholar 

  35. Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF, Nataf S (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107:806–812. doi:10.1182/blood-2005-01-0154

    Article  PubMed  CAS  Google Scholar 

  36. Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16:40–54. doi:10.1111/j.1750-3639.2006.tb00560.x

    Article  PubMed  CAS  Google Scholar 

  37. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223. doi:10.1016/S0140-6736(08)61075-2

    Article  PubMed  CAS  Google Scholar 

  38. Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325

    Article  PubMed  CAS  Google Scholar 

  39. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131:1630–1645. doi:10.1093/brain/awn016

    Article  PubMed  Google Scholar 

  40. Jellinger KA (2008) The pathology of “vascular dementia”: a critical update. J Alzheimers Dis 14:107–123

    PubMed  CAS  Google Scholar 

  41. Jellinger KA, Attems J (2007) Neuropathological evaluation of mixed dementia. J Neurol Sci 257:80–87. doi:10.1016/j.jns.2007.01.045

    Article  PubMed  CAS  Google Scholar 

  42. Kuo YM, Crawford F, Mullan M, Kokjohn TA, Emmerling MR, Weller RO, Roher AE (2000) Elevated A beta and apolipoprotein E in A betaPP transgenic mice and its relationship to amyloid accumulation in Alzheimer’s disease. Mol Med 6:430–439

    PubMed  CAS  Google Scholar 

  43. Kuo YM, Emmerling MR, Vigo Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081. doi:10.1074/jbc.271.8.4077

    Article  PubMed  CAS  Google Scholar 

  44. Lahiri DK, Rogers JT, Greig NH, Sambamurti K (2004) Rationale for the development of cholinesterase inhibitors as anti-Alzheimer agents. Curr Pharm Des 10:3111–3119. doi:10.2174/1381612043383331

    Article  PubMed  CAS  Google Scholar 

  45. Lashley T, Revesz T, Plant G, Bandopadhyay R, Lees AJ, Frangione B, Wood NW, de Silva R, Ghiso J, Rostagno A, Holton JL (2008) Expression of BRI2 mRNA and protein in normal human brain and familial British dementia: its relevance to the pathogenesis of disease. Neuropathol Appl Neurobiol 34:492–505. doi:10.1111/j.1365-2990.2008.00935.x

    Article  PubMed  CAS  Google Scholar 

  46. Layfield R, Lowe J, Bedford L (2005) The ubiquitin–proteasome system and neurodegenerative disorders. Essays Biochem 41:157–171. doi:10.1042/EB0410157

    Article  PubMed  CAS  Google Scholar 

  47. Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood–brain barrier during inflammatory conditions. Histol Histopathol 19:535–564

    PubMed  CAS  Google Scholar 

  48. Lowe J, Mirra SS, Hyman BT, Dickson DW et al (2008) Ageing and dementia. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology, 8th edn. Hodder Arnold, London, pp 1031–1152

    Google Scholar 

  49. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  50. Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131

    PubMed  CAS  Google Scholar 

  51. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866. doi:10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  52. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 18:240–252. doi:10.1111/j.1750-3639.2008.00132.x

    Article  PubMed  CAS  Google Scholar 

  53. Miners JS, Van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG (2006) Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J Neuropathol Exp Neurol 65:1012–1021

    Article  PubMed  CAS  Google Scholar 

  54. Moody DM, Brown WR, Challa VR, Ghazi-Birry HS, Reboussin DM (1997) Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci 826:103–116. doi:10.1111/j.1749-6632.1997.tb48464.x

    Article  PubMed  CAS  Google Scholar 

  55. Nagasawa S, Handa H, Okumura A, Naruo Y, Moritake K, Hayashi K (1979) Mechanical properties of human cerebral arteries. Part 1: Effects of age and vascular smooth muscle activation. Surg Neurol 12:297–304

    PubMed  CAS  Google Scholar 

  56. Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D, Seubert P, Schenk D, Holmes C (2006) Abeta species removal after Abeta42 immunization. J Neuropathol Exp Neurol 65:1040–1048. doi:10.1097/01.jnen.0000240466.10758.ce

    Article  PubMed  CAS  Google Scholar 

  57. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452. doi:10.1038/nm840

    Article  PubMed  CAS  Google Scholar 

  58. Nicoll JAR, Yamada M, Frackowiak J, Mazur Kolecka B, Weller RO (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease. Pro-CAA position statement. Neurobiol Aging 25:589–597. doi:10.1016/j.neurobiolaging.2004.02.003 Discussion 603-604

    Article  PubMed  CAS  Google Scholar 

  59. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    PubMed  CAS  Google Scholar 

  60. Oshima K, Akiyama H, Tsuchiya K, Kondo H, Haga C, Shimomura Y, Iseki E, Uchikado H, Kato M, Niizato K, Arai H (2006) Relative paucity of tau accumulation in the small areas with abundant Abeta42-positive capillary amyloid angiopathy within a given cortical region in the brain of patients with Alzheimer pathology. Acta Neuropathol 111:510–518. doi:10.1007/s00401-006-0070-z

    Article  PubMed  CAS  Google Scholar 

  61. Owens T, I. B, Engelhardt B (2008) Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 67:1113–1121. doi:10.1097/NEN.0b013e31818f9ca8

  62. Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, Luehrs DC, Kuo YM, Lopez J, Brune D, Ferrer I, Masliah E, Newel AJ, Beach TG, Castano EM, Roher AE (2006) Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer’s disease patients: a biochemical analysis. Am J Pathol 169:1048–1063. doi:10.2353/ajpath.2006.060269

    Article  PubMed  CAS  Google Scholar 

  63. Perry EK, Kilford L, Lees AJ, Burn DJ, Perry RH (2003) Increased Alzheimer pathology in Parkinson’s disease related to antimuscarinic drugs. Ann Neurol 54:235–238. doi:10.1002/ana.10639

    Article  PubMed  CAS  Google Scholar 

  64. Poirier J, Derouesne C (1985) Le concept de lacune cerebrale de 1838 a nos jours. Rev Neurol 141:3–17

    PubMed  CAS  Google Scholar 

  65. Pollock H, Hutchings M, Weller RO, Zhang ET (1997) Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 191:337–346. doi:10.1046/j.1469-7580.1997.19130337.x

    Article  PubMed  Google Scholar 

  66. Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO (2003) Capillary and arterial amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29:106–117. doi:10.1046/j.1365-2990.2003.00424.x

    Article  PubMed  CAS  Google Scholar 

  67. Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62:885–898

    PubMed  CAS  Google Scholar 

  68. Roher AE, Kuo Y-M, Esh C, Knebel C, Weiss N, Kalback W, Luehrs DC, Childress JL, Beach TG, Weller RO, Kokjohn TA (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9:112–122

    PubMed  Google Scholar 

  69. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zurcher Neely HA, Heinrikson RL, Ball MJ et al (1993) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268:3072–3083

    PubMed  CAS  Google Scholar 

  70. Salzman KL, Osborn AG, House P, Jinkins JR, Ditchfield A, Cooper JA, Weller RO (2005) Giant tumefactive perivascular spaces. AJNR Am J Neuroradiol 26:298–305

    PubMed  Google Scholar 

  71. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177. doi:10.1038/22124

    Article  PubMed  CAS  Google Scholar 

  72. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theory Biol 238:962–974. doi:10.1016/j.jtbi.2005.07.005

    Article  CAS  Google Scholar 

  73. Scholz W (1938) Studien zur Pathologie der Hirngefässe II. Die drusige Entartung der Hirnarterien und -capillaren (Eine Form seniler Gefässerkrankung). Zeitschrift für die gesamte. Neurol Psychiatr (Bucur) 162:694–715

    Google Scholar 

  74. Schroeter S, Khan K, Barbour R, Doan M, Chen M, Guido T, Gill D, Basi G, Schenk D, Seubert P, Games D (2008) Immunotherapy reduces vascular amyloid-beta in PDAPP mice. J Neurosci 28:6787–6793. doi:10.1523/JNEUROSCI.2377-07.2008

    Article  PubMed  CAS  Google Scholar 

  75. Scolding NJ, Joseph F, Kirby PA, Mazanti I, Gray F, Mikol J, Ellison D, Hilton DA, Williams TL, MacKenzie JM, Xuereb JH, Love S (2005) Abeta-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 128:500–515. doi:10.1093/brain/awh379

    Article  PubMed  Google Scholar 

  76. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  77. Selkoe DJ (2006) Amyloid beta-peptide is produced by cultured cells during normal metabolism: a reprise. J Alzheimers Dis 9:163–168

    PubMed  CAS  Google Scholar 

  78. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-beta(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499. doi:10.1172/JCI10498

    Article  PubMed  CAS  Google Scholar 

  79. Shinkai Y, Yoshimura M, Ito Y, Odaka A, Suzuki N, Yanagisawa K, Ihara Y (1995) Amyloid beta -proteins 1-40 and 1-42(43) in the soluble fraction of extra- and intracranial blood vessels. Ann Neurol 38:421–428. doi:10.1002/ana.410380312

    Article  PubMed  CAS  Google Scholar 

  80. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844

    PubMed  CAS  Google Scholar 

  81. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301

    PubMed  Google Scholar 

  82. Thal DR, Ghebremedhin E, Rub U, Yamaguchi H, Tredici KD, Braak H (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:282–293

    PubMed  Google Scholar 

  83. Tian J, Shi J, Bailey K, Mann DM (2003) Negative association between amyloid plaques and cerebral amyloid angiopathy in Alzheimer’s disease. Neurosci Lett 352:137–140. doi:10.1016/j.neulet.2003.08.048

    Article  PubMed  CAS  Google Scholar 

  84. Tian J, Shi J, Bailey K, Mann DM (2004) Relationships between arteriosclerosis, cerebral amyloid angiopathy and myelin loss from cerebral cortical white matter in Alzheimer’s disease. Neuropathol Appl Neurobiol 30:46–56. doi:10.1046/j.0305-1846.2003.00510.x

    Article  PubMed  CAS  Google Scholar 

  85. Tsubuki S, Takaki Y, Saido TC (2003) Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Abeta to physiologically relevant proteolytic degradation. Lancet 361:1957–1958. doi:10.1016/S0140-6736(03)13555-6

    Article  PubMed  CAS  Google Scholar 

  86. Vinters HV, Wang ZZ, Secor DL (1996) Brain parenchymal and microvascular amyloid in Alzheimer’s disease. Brain Pathol 6:179–195. doi:10.1111/j.1750-3639.1996.tb00799.x

    Article  PubMed  CAS  Google Scholar 

  87. Walsh DM, Selkoe DJ (2007) Abeta oligomers—a decade of discovery. J Neurochem 101:1172–1184. doi:10.1111/j.1471-4159.2006.04426.x

    Article  PubMed  CAS  Google Scholar 

  88. Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57:885–894. doi:10.1097/00005072-199810000-00001

    Article  PubMed  CAS  Google Scholar 

  89. Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34. doi:10.1016/S1286-0115(05)83235-7

    Article  PubMed  CAS  Google Scholar 

  90. Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14. doi:10.1007/s00401-008-0457-0

    Article  PubMed  CAS  Google Scholar 

  91. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733

    PubMed  CAS  Google Scholar 

  92. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266. doi:10.1111/j.1750-3639.2008.00133.x

    Article  PubMed  CAS  Google Scholar 

  93. Weller RO, Yow HY, Preston SD, Mazanti I, Nicoll JAR (2002) Cerebrovascular disease is a major factor in the failure of elimination of Abeta from the aging human brain: implications for therapy of Alzheimer’s disease. Ann N Y Acad Sci 977:162–168

    Article  PubMed  CAS  Google Scholar 

  94. Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflamm 1:24. doi:10.1186/1742-2094-1-24

    Article  CAS  Google Scholar 

  95. Wisniewski HM, Wegiel J (1994) Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol 87:233–241. doi:10.1007/BF00296738

    Article  PubMed  CAS  Google Scholar 

  96. Yow HY, Weller RO (2002) A role for cerebrovascular disease in determining the pattern of beta amyloid deposition in Alzheimer’s disease. Neuropathol Appl Neurobiol 28:149. doi:10.1046/j.1365-2990.2002.39286_4.x

    Article  Google Scholar 

  97. Zhang-Nunes SX, Maat-Schieman ML, van Duinen SG, Roos RA, Frosch MP, Greenberg SM (2006) The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 16:30–39. doi:10.1111/j.1750-3639.2006.tb00559.x

    Article  PubMed  CAS  Google Scholar 

  98. Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J Anat 170:111–123

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anton Page of the Biomedical Imaging Unit Southampton University Hospitals for preparing the figures for this paper. This study was supported by the Medical Research Council and the Alzheimer Research Trust. Research Ethics Committee Approval reference 07/H0505/86.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy O. Weller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weller, R.O., Boche, D. & Nicoll, J.A.R. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol 118, 87–102 (2009). https://doi.org/10.1007/s00401-009-0498-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0498-z

Keywords

Navigation