Skip to main content

Advertisement

Log in

Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease

Variability in familial Parkinson’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Individuals with familial Parkinson’s disease (PD) due to a monogenic defect can show considerable clinical and neuropathological variability. To identify factors underlying this variability, histopathological analysis was performed in two clinically different A53T α-synuclein heterozygotes from Family H, a multigenerational α-synuclein A53T kindred. To determine whether additional genetic factors could contribute to phenotypic variability, Family H and another multigenerational A53T kindred were analyzed for parkin polymorphisms. We identified a previously described variant in parkin exon 4 associated with increased PD risk (S167N). The two A53T heterozygotes had markedly different neuropathology and different parkin genotypes: A N167 homozygote had early onset rapidly progressive disease, early dementia, myoclonus and sleep disorder, while a S167 homozygote had late onset, slowly progressive disease and late dementia. Both had brainstem, cortical, and intraneuritic Lewy bodies (LB). The N167 individual had widespread cortical neurofibrillary degeneration, while the S167 individual had only medial temporal lobe neurofibrillary degeneration. The N167 individual had severe neuronal loss in CA2 associated with Lewy neurites (LN), while the S167 individual had severe neuronal loss in CA1 associated with TDP-43 immunoreactive neuronal inclusions. These findings implicate TDP-43 in the pathology of familial PD and suggest that parkin may act as a modifier of the A53T α-synuclein phenotype of familial PD. Furthermore, they suggest a mechanism by which a rare genetic variant that is associated with a minor increase of PD risk in the heterozygous state may, in the homozygous state, exacerbate a disease phenotype associated with a highly penetrant dominant allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amador-Ortiz C, Ahmed Z, Zehr C, Dickson DW (2007) Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration. Acta Neuropathol 113:245–252

    Article  PubMed  Google Scholar 

  2. Amador-Ortiz C, Lin W-L, Ahmed Z, Personett D, Davies P, Duara R, Graff-Redford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  PubMed  CAS  Google Scholar 

  3. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  PubMed  CAS  Google Scholar 

  4. Ayala YM, Pantano S, D’Ambroglio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, Drosophila and C. elegans TDP-43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348:575–588

    Article  PubMed  CAS  Google Scholar 

  5. Baptista MJ, Cookson MR, Miller DW (2004) Parkin and alpha-synuclein: opponent actions in the pathogenesis of Parkinson’s disease. Neuroscientist 10:63–72

    Article  PubMed  CAS  Google Scholar 

  6. Braak H, Bohl JR, Müller CM, Rüb de Vos RAI, Del Tredici K (2005) Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with Parkinson’s disease reconsidered. Mov Disord 21:2042–2051

    Article  Google Scholar 

  7. Buratti E, Dork T, Zuccato E, Pagani F, Romano M, Baralle FE (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20:1774–1784

    Article  PubMed  CAS  Google Scholar 

  8. Cairns NJ, Neumann M, Bigio EH, Holm IE, Troost D, Hatanpaa KJ, Foong C, White CL 3rd, Schneider JA, Kretzschmar HA, Carter D, Taylor-Reinwald L, Paulsmeyer K, Strider J, Gitcho M, Goate AM, Morris JC, Mishra M, Kwong LK, Stieber A, Xu Y, Forman MS, Trojanowski JQ, Lee VM, Mackenzie IR (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171:227–240

    Article  PubMed  CAS  Google Scholar 

  9. Davidson Y, Kelly T, Mackenzie IRA, Pickering-Brown S, Du Plessis D, Neary D, Snowden JS, Mann DMA (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain TAR DNA-binding protein, TDP-43. Acta Neuropathol 113:521–533

    Article  PubMed  CAS  Google Scholar 

  10. DeStefano AL, Lew MF, Golbe LI, Mark MH, Lazzarini AM, Guttman M, Montgomery E, Waters CH, Singer C, Watts RL, Currie LJ Wooten GF, Maher NE, Wilk JB, Sullivan KM, Slater KM, Saint-Hilaire MH, Feldman RG, Suchowersky O, Lafontaine AL, Labelle N, Growdon JH, Vieregge P, Pramstaller PP, Klein C, Hubble JP, Reider CR, Stacy M, MacDonald ME, Gusella JF, Myers RH (2002) PARK3 influences age at onset in Parkinson disease: a genome scan in the GenePD study. Am J Hum Genet 70:1089–1095

    Article  PubMed  CAS  Google Scholar 

  11. Dickson DW, Ruan D, Crystal H, Mark MH, Davies P, Kress Y, Yen SH (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2–3 neurites specific to DLBD. Neurology 41:1402–1409

    PubMed  CAS  Google Scholar 

  12. Duda JE, Giasson BI, Mabon ME, Miller DC, Golbe LI, Lee VM, Trojanowski JQ (2002) Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathol 104:7–11

    Article  PubMed  CAS  Google Scholar 

  13. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek ZK, Dickson DW, Langston JW (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55:174–179

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson EM, Schule B, Langston JW, Middleton FA, Ross OA, Hulihan M, Gasser T, Farrer MJ (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68:916–922

    Article  PubMed  CAS  Google Scholar 

  15. Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59:449–458

    Article  PubMed  CAS  Google Scholar 

  16. Golbe LI, Di Iorio G, Sanges G, Lazzarini AM, La Sala S, Bonavita V, Duvoisin RC (1996) Clinical genetic analysis of Parkinson’s disease in the Contursi kindred. Ann Neurol 40:767–775

    Article  PubMed  CAS  Google Scholar 

  17. Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH, Hardy J, Dickson DW (2000) Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 99:663–672

    Article  PubMed  CAS  Google Scholar 

  18. Haider NB, Ikeda A, Naggert JK, Nishina PM (2002) Genetic modifiers of vision and hearing. Hum Mol Genet 11:1195–1206

    Article  PubMed  CAS  Google Scholar 

  19. Hansen LA, Masliah E, Terry RD, Mirra SS (1989) A neuropathological subset of Alzheimer’s disease with concomitant Lewy body disease and spongiform change. Acta Neuropathol 78:194–201

    Article  PubMed  CAS  Google Scholar 

  20. Haywood AF, Staveley BE (2004) Parkin counteracts symptoms in a Drosophila model of Parkinson’s disease. BMC Neurosci 5:14

    Article  PubMed  Google Scholar 

  21. Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW (2003) Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. J Neuropathol Exp Neurol 62:389–397

    PubMed  CAS  Google Scholar 

  22. Josephs KA, Ahmed Z, Katsuse O, Parisi JF, Boeve BF, Knoopman DS, Petersen RC, Davies P, Duara R, Graff-Redford NR, Uitti RJ, Rademakers R, Adamson J, Baker M, Hutton ML, Dickson DW (2007) Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol 66:142–151

    Article  PubMed  CAS  Google Scholar 

  23. Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E (2008) α-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson’s disease. J Biol Chem 283:6979–6987

    Article  PubMed  CAS  Google Scholar 

  24. Kotzbauer PT, Giasson BI, Kravitz AV, Golbe LI, Mark MH, Trojanowski JQ, Lee VM (2004) Fibrillization of alpha-synuclein and tau in familial Parkinson’s disease caused by the A53T alpha-synuclein mutation. Exp Neurol 187:279–288

    Article  PubMed  CAS  Google Scholar 

  25. Langston JW, Sastry S, Chan P, Forno LS, Bolin LM, Di Monte DA (1998) Novel alpha-synuclein-immunoreactive proteins in brain samples from the Contursi kindred, Parkinson’s, and Alzheimer’s disease. Exp Neurol 154:684–690

    Article  PubMed  CAS  Google Scholar 

  26. Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, Kwong LK, Lee VM, Schellenberg GD, Bird TD (2007) A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain 130:1360–1374

    Article  PubMed  CAS  Google Scholar 

  27. Mackenzie IRA, Baborie A, Pickering-Brown S, Du Plessis D, Jaros E, Perry RH, Neary D, Snowden JS, Mann DMA (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112:539–549

    Article  PubMed  Google Scholar 

  28. Markopoulou K, Wszolek ZK, Pfeiffer RF (1995) A Greek-American kindred with autosomal dominant, levodopa-responsive parkinsonism and anticipation. Ann Neurol 38:373–378

    Article  PubMed  CAS  Google Scholar 

  29. Markopoulou K, Wszolek ZK, Pfeiffer RF, Chase BA (1999) Reduced expression of the G209A alpha-synuclein allele in familial Parkinsonism. Ann Neurol 6:374–381

    Article  Google Scholar 

  30. Mori H, Hattori N, Mizuno Y (2003) Genotype-phenotype correlation: familial Parkinson disease. Neuropathology 23:90–94

    Article  PubMed  Google Scholar 

  31. Nadeau JH (2001) Modifier genes in mice and humans. Nat Rev Genet 2:165–174

    Article  PubMed  CAS  Google Scholar 

  32. Nakashima-Yasuda H, Uryu K, Robinson J, Xie SX, Hurtig H, Duda JE, Arnold SE, Siderowf A, Grossman M, Leverenz JB, Woltjer R, Lopez OL, Hamilton R, Tsuang DW, Galasko D, Masliah E, Kaye J, Clark CM, Montine TJ, Lee VM, Trojanowski JQ (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229

    Article  PubMed  CAS  Google Scholar 

  33. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, McKenzie TR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  34. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, Kitami T, Sato K, Kuroda R, Tomiyama H, Mizoguchi K, Murata M, Toda T, Imoto I, Inazawa J, Mizuno Y, Hattori N (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59:298–309

    Article  PubMed  CAS  Google Scholar 

  35. Pittman AM, Fung HC, de Silva R (2006) Untangling the tau gene association with neurodegenerative disorders. Hum Mol Genet 15:R188–R195

    Article  PubMed  CAS  Google Scholar 

  36. Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y, Yamanouchi H, Murayama S (2004) Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 63:911–918

    PubMed  Google Scholar 

  37. Satoh J, Kuroda Y (1999) Association of codon 167 Ser/Asn heterozygosity in the parkin gene with sporadic Parkinson’s disease. Neuroreport 10:2735–2739

    Article  PubMed  CAS  Google Scholar 

  38. Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Masterman D, Mastaglia F, Laing NG, Stajich JM, Slotterbeck B, Booze MW, Ribble RC, Rampersaud E, West SG, Gibson RA, Middleton LT, Roses AD, Haines JL, Scott BL, Vance JM, Pericak-Vance MA (2001) Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 286:2239–2244

    Article  PubMed  CAS  Google Scholar 

  39. Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA (2001) Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 49:313–319

    Article  PubMed  CAS  Google Scholar 

  40. Springer W, Hoppe T, Schmidt E, Baumeister R (2005) A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Hum Mol Genet 14:3407–3423

    Article  PubMed  CAS  Google Scholar 

  41. Togo T, Cookson N, Dickson DW (2002) Argyrophilic grain disease: neuropathology, frequency in a dementia brain bank and lack of relationship with apolipoprotein E. Brain Pathol 12:45–52

    PubMed  Google Scholar 

  42. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99:14–20

    Article  PubMed  CAS  Google Scholar 

  43. Wang M, Hattori N, Matsumine H, Kobayashi T, Yoshino M, Morioka A, Kitada T, Asakawa S, Minoshima S, Shimizu N, Mizuno Y (1999) Polymorphism in the parkin gene in sporadic Parkinson’s disease. Ann Neurol 45:655–658

    Article  PubMed  CAS  Google Scholar 

  44. Wang IF, Reddy NM, Shen CKJ (2002) Higher order arrangement of the eukaryotic nuclear bodies. PNAS 99:13583–13588

    Article  PubMed  CAS  Google Scholar 

  45. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12:521–528

    Article  PubMed  CAS  Google Scholar 

  46. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants P50-AG25711, P50-AG16574, P50-NS40256, P01-AG17216, P01-AG03949, R15-NS043162 and a seed grant to KM from the University of Nebraska Medical Center. The histological support of Virginia Phillips, Linda Rousseau and Monica Casey-Castanedes is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Markopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markopoulou, K., Dickson, D.W., McComb, R.D. et al. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Acta Neuropathol 116, 25–35 (2008). https://doi.org/10.1007/s00401-008-0372-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0372-4

Keywords

Navigation