Skip to main content
Log in

Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson's disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). It has been suggested that microglial inflammation augments the progression of PD. Neuromelanin (NM), a complex polymer pigment found in catecholaminergic neurons, has sparked interest because of the suggestion that NM is involved in cell death in Parkinson's disease, possibly via microglia activation. To further investigate the possible role of NM in the pathogenesis of PD, we conducted in vivo experiments to find out whether microglial cells become activated after injection of human neuromelanin (NM) into (1) the cerebral cortex or (2) the substantia nigra to monitor in this PD-relevant model both microglial activation and possible neurodegeneration. In this study, adult male Wistar rats received an intracerebral injection of either NM, bacterial lipopolysaccharide (LPS, positive control), phosphate-buffered saline (PBS, negative control) or colloidal gold suspension (negative particular control). After different survival times (1, 8 or 12 weeks), brain slices from the cerebral cortex or substantia nigra (SN, 1 week) were stained with Iba-1 and/or GFAP antibody to monitor microglial and astrocytic reaction, and with tyrosine hydroxylase (TH) to monitor dopaminergic cell survival (SN group only). The injection of LPS induced a strong inflammatory response in the cortex as well in the substantia nigra. Similar results could be obtained after NM injection, while the injection of PBS or gold suspension showed only moderate or no glial activation. However, the inflammatory response declined during the time course. In the SN group, there was, apart from strong microglia activation, a significant dopaminergic cell loss after 1 week of survival time. Our findings clearly indicate that extracellular NM could be one of the key molecules leading to microglial activation and neuronal cell death in the substantia nigra. This may be highly relevant to the elucidation of therapeutic strategies in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long- standing Parkinson's disease. Mov Disord 13:221–227

    Article  PubMed  CAS  Google Scholar 

  2. Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118

    Article  PubMed  CAS  Google Scholar 

  3. Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, Sabbagh MN, Adler CH (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114:419–424

    Article  PubMed  Google Scholar 

  4. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  5. Braak H, Braak E, Yilmazer D, Schultz C, de Vos RA, Jansen EN (1995) Nigral and extranigral pathology in Parkinson's disease. J Neural Transm Suppl 46:15–31

    PubMed  CAS  Google Scholar 

  6. Castano A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  PubMed  CAS  Google Scholar 

  7. Croisier E, Graeber MB (2006) Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 112:517–530

    Article  PubMed  Google Scholar 

  8. De Pablos RM, Herrera AJ, Villaran RF, Cano J, Machado A (2005) Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra. FASEB J 19:407–409

    PubMed  Google Scholar 

  9. Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease. J Neurochem 86:1142–1148

    PubMed  CAS  Google Scholar 

  10. Gibb WR (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease. Brain Res 581:283–291

    Article  PubMed  CAS  Google Scholar 

  11. Giulian D, Corpuz M (1993) Microglial secretion products and their impact on the nervous system. Adv Neurol 59:315–320

    PubMed  CAS  Google Scholar 

  12. Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA 104:18754–18759

    Article  PubMed  CAS  Google Scholar 

  13. Hagg T, Varon S (1993) Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo. Proc Natl Acad Sci U S A 90:6315–6319

    Article  PubMed  CAS  Google Scholar 

  14. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol 106:518–526

    Article  PubMed  CAS  Google Scholar 

  15. Ishikawa A, Takahashi H (1998) Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol 245:4–9

    Article  Google Scholar 

  16. Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson's disease related to their neuromelanin content? J Neurochem 59:1080–1089

    Article  PubMed  CAS  Google Scholar 

  17. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  PubMed  CAS  Google Scholar 

  18. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  19. Lindquist NG, Larsson BS, Lyden-Sokolowski A (1988) Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin. Neurosci Lett 93:1–6

    Article  PubMed  CAS  Google Scholar 

  20. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer’s disease brains. Neurology 38:1285–1291

    PubMed  CAS  Google Scholar 

  21. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21:195–218

    Article  PubMed  CAS  Google Scholar 

  22. McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinon´s disease. Adv Neurol 86:83–89

    PubMed  CAS  Google Scholar 

  23. Pal PK, Samii A, Calne DB (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20:227–238

    PubMed  CAS  Google Scholar 

  24. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  25. Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M, (2005) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644

    Article  PubMed  CAS  Google Scholar 

  26. Shoham S, Youdim MB (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cell Mol Biol (Noisy-le-grand) 46:743–760

    CAS  Google Scholar 

  27. Sokolowski AL, Larsson BS, Lindquist NG, (1990) Distribution of 1-(3H)-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (3H-MPTP) in the frog: uptake in neuromelanin. Pharmacol Toxicol 66:252–258

    Article  PubMed  CAS  Google Scholar 

  28. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A 97:11869–11874

    Article  PubMed  CAS  Google Scholar 

  29. Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease. FASEB J 17:500–502

    PubMed  CAS  Google Scholar 

  30. Wu DC, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  31. Zecca L, Costi P, Mecacci C, Ito S, Terreni M, Sonnino S (2000) Interaction of human substantia nigra neuromelanin with lipids and peptides. J Neurochem 74:1758–1765

    Article  PubMed  CAS  Google Scholar 

  32. Zecca L, Fariello R, Riederer P, Sulzer D, Gatti A, Tampellini D (2002) The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson's disease. FEBS Lett 510:216–220

    Article  PubMed  CAS  Google Scholar 

  33. Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, Sarna T, Swartz HM (1996) Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 73:407–415

    Article  PubMed  CAS  Google Scholar 

  34. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A 101:9843–9848

    Article  PubMed  CAS  Google Scholar 

  35. Zhang W, Shin EJ, Wang T, Lee PH, Pang H, Wie MB, Kim WK, Kim SJ, Huang WH, Wang Y, Zhang W, Hong JS, Kim HC (2006) 3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro. FASEB J 20:2496–2511

    Article  PubMed  CAS  Google Scholar 

  36. Zucca FA, Giaveri G, Gallorini M, Albertini A, Toscani M, Pezzoli G, Lucius R, Wilms H, Sulzer D, Ito S, Waakamatsu K, Zecca L (2004) The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 17:610–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Kölln and G. Jopp for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Lucius.

Additional information

Luigi Zecca and Henrik Wilms contributed equally to this work.

This work was supported by grants from the Michael J. Fox Foundation (New York, NY, USA), the Hensel-Foundation, University of Kiel (to H.W. and R.L.) and a generous donation from the “Herbert und Inge Lampe Stiftung” (to H.W. and R.L.). L.Z., M.L.P. and F.A.Z thank for support the MIUR-FIRB project on Protein Folding and Aggregation: Metal and Biomolecules in Protein Conformational Diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecca, L., Wilms, H., Geick, S. et al. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson's disease. Acta Neuropathol 116, 47–55 (2008). https://doi.org/10.1007/s00401-008-0361-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0361-7

Keywords

Navigation