Skip to main content

Advertisement

Log in

Heat shock protein 70 expression in epilepsy suggests stress rather than protection

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Although heat shock protein 70 (HSP70) has been suggested to be a stress marker or to play a protective role in brain injury, the relevance of its pathological expression in epilepsy is unclear. We investigated the expression of HSP70 in brain tissue from human temporal lobe epilepsy (TLE) patients and from kainic acid (KA)-induced seizure-related neuronal damage in vivo and in vitro. The human TLE tissue showed severe neuronal loss and gliosis in hippocampal CA3 area. The KA-induced neuronal damage was similar to pathological changes of the TLE hippocampus. An increased number of TUNEL-positive cells were observed at day 5 when compared with day 2 after seizure induction. Intense HSP70 immunofluorescence was observed in hippocampal CA3 pyramidal neurons of rat, 2 days following KA administration, which then declined in labeling by day 5. No HSP70 expression was found in Fluoro-Jade B positive dying neurons by double staining. Western blot analysis showed an increased level of p53 and Bax expression following KA treatment. In vitro, there was no apparent difference in the degree of apoptosis between HSP70 siRNA- and control empty vector-transfected primary neurons following KA treatment. Our results revealed that HSP70 was a useful indicator of stressed neurons in acute phase of epilepsy, but not associated with neuronal death, thereby suggesting that HSP70 played no role in neuroprotection during an epileptogenic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akbar MT, Wells DJ, Latchman DS, de Belleroche J (2001) Heat shock protein 27 shows a distinctive widespread spatial and temporal pattern of induction in CNS glial and neuronal cells compared to heat shock protein 70 and caspase 3 following kainate administration. Brain Res Mol Brain Res 93:148–163

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong JN, Plumier JC, Robertson HA, Currie RW (1996) The inducible 70,000 molecular/weight heat shock protein is expressed in the degenerating dentate hilus and piriform cortex after systemic administration of kainic acid in the rat. Neuroscience 74:685–693

    Article  PubMed  CAS  Google Scholar 

  3. Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23

    Article  PubMed  CAS  Google Scholar 

  4. Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403

    Article  PubMed  CAS  Google Scholar 

  5. Blumcke I, Beck H, Lie AA, Wiestler OD (1999) Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res 36:205–223

    Article  PubMed  CAS  Google Scholar 

  6. Blumcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, Merschhemke M, Meencke HJ, Lehmann T, von Deimling A, Scheiwe C, Zentner J, Volk B, Romstock J, Stefan H, Hildebrandt M (2007) A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol (Berl) 113:235–244

    Article  Google Scholar 

  7. Craig EA, Weissman JS, Horwich AL (1994) Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78:365–372

    Article  PubMed  CAS  Google Scholar 

  8. de Freitas MS, Spohr TC, Benedito AB, Caetano MS, Margulis B, Lopes UG, Moura-Neto V (2002) Neurite outgrowth is impaired on HSP70-positive astrocytes through a mechanism that requires NF-kappaB activation. Brain Res 958:359–370

    Article  PubMed  Google Scholar 

  9. Fujikawa DG, Shinmei SS, Cai B (2000) Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98:41–53

    Article  PubMed  CAS  Google Scholar 

  10. Fujiki M, Kobayashi H, Abe T, Ishii K (2003) Astroglial activation accompanies heat shock protein upregulation in rat brain following single oral dose of geranylgeranylacetone. Brain Res 991:254–257

    Article  PubMed  CAS  Google Scholar 

  11. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  12. Gilmore EC, Nowakowski RS, Caviness VS Jr, Herrup K (2000) Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together? Trends Neurosci 23:100–105

    Article  PubMed  CAS  Google Scholar 

  13. Gomperts SN, Rao A, Craig AM, Malenka RC, Nicoll RA (1998) Postsynaptically silent synapses in single neuron cultures. Neuron 21:1443–1451

    Article  PubMed  CAS  Google Scholar 

  14. Henshall DC, Simon RP (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 25:1557–1572

    Article  PubMed  CAS  Google Scholar 

  15. Hoehn B, Ringer TM, Xu L, Giffard RG, Sapolsky RM, Steinberg GK, Yenari MA (2001) Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab 21:1303–1309

    Article  PubMed  CAS  Google Scholar 

  16. Holopainen IE, Jarvela J, Lopez-Picon FR, Pelliniemi LJ, Kukko-Lukjanov TK (2004) Mechanisms of kainate-induced region-specific neuronal death in immature organotypic hippocampal slice cultures. Neurochem Int 45:1–10

    Article  PubMed  CAS  Google Scholar 

  17. Krichevsky AM, Kosik KS (2002) RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci USA 99:11926–11929

    Article  PubMed  CAS  Google Scholar 

  18. Krueger AM, Armstrong JN, Plumier J, Robertson HA, Currie RW (1999) Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. Brain Res Mol Brain Res 71:265–278

    Article  PubMed  CAS  Google Scholar 

  19. Lee CS, Montebello J, Rush M, Georgiou T, Wawryk S, Rode J (1994) Overexpression of heat shock protein (HSP) 70 associated with abnormal p53 expression in cancer of the pancreas. Zentralbl Pathol 140:259–264

    PubMed  CAS  Google Scholar 

  20. Li WX, Chen CH, Ling CC, Li GC (1996) Apoptosis in heat-induced cell killing: the protective role of hsp-70 and the sensitization effect of the c-myc gene. Radiat Res 145:324–330

    Article  PubMed  CAS  Google Scholar 

  21. Liu W, Liu R, Schreiber SS, Baudry M (2001) Role of polyamine metabolism in kainic acid excitotoxicity in organotypic hippocampal slice cultures. J Neurochem 79:976–984

    Article  PubMed  CAS  Google Scholar 

  22. Loones MT, Chang Y, Morange M (2000) The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 5:291–305

    Article  PubMed  CAS  Google Scholar 

  23. Lopez E, Pozas E, Rivera R, Ferrer I (1999) Bcl-2, Bax and Bcl-x expression following kainic acid administration at convulsant doses in the rat. Neuroscience 91:1461–1470

    Article  PubMed  CAS  Google Scholar 

  24. Loscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53:239–258

    Article  PubMed  CAS  Google Scholar 

  25. Maehara Y, Oki E, Abe T, Tokunaga E, Shibahara K, Kakeji Y, Sugimachi K (2000) Overexpression of the heat shock protein HSP70 family and p53 protein and prognosis for patients with gastric cancer. Oncology 58:144–151

    Article  PubMed  CAS  Google Scholar 

  26. Marini AM, Kozuka M, Lipsky RH, Nowak TS Jr (1990) 70-kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyperthermia in vivo. J Neurochem 54:1509–1516

    Article  PubMed  CAS  Google Scholar 

  27. Merrick BA, He C, Witcher LL, Patterson RM, Reid JJ, Pence-Pawlowski PM, Selkirk JK (1996) HSP binding and mitochondrial localization of p53 protein in human HT1080 and mouse C3H10T1/2 cell lines. Biochim Biophys Acta 1297:57–68

    PubMed  Google Scholar 

  28. Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267

    Article  PubMed  CAS  Google Scholar 

  29. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  30. Nadler JV, Cuthbertson GJ (1980) Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways. Brain Res 195:47–56

    Article  PubMed  CAS  Google Scholar 

  31. Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677

    Article  PubMed  CAS  Google Scholar 

  32. Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069–2079

    PubMed  CAS  Google Scholar 

  33. Ogura M, Nakamichi N, Takano K, Oikawa H, Kambe Y, Ohno Y, Taniura H, Yoneda Y (2006) Functional expression of A glutamine transporter responsive to down-regulation by lipopolysaccharide through reduced promoter activity in cultured rat neocortical astrocytes. J Neurosci Res 83:1447–1460

    Article  PubMed  CAS  Google Scholar 

  34. Pavlik A, Aneja IS, Lexa J, Al-Zoabi BA (2003) Identification of cerebral neurons and glial cell types inducing heat shock protein Hsp70 following heat stress in the rat. Brain Res 973:179–189

    Article  PubMed  CAS  Google Scholar 

  35. Peitsch MC, Muller C, Tschopp J (1993) DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res 21:4206–4209

    Article  PubMed  CAS  Google Scholar 

  36. Pelham HR (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3:3095–3100

    PubMed  CAS  Google Scholar 

  37. Pitkanen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismagi J, Grohn O, Nissinen J (2007) Epileptogenesis in experimental models. Epilepsia 48(Suppl 2):13–20

    Article  PubMed  CAS  Google Scholar 

  38. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PN (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    Article  PubMed  CAS  Google Scholar 

  39. Racine RJ, Gartner JG, Burnham WM (1972) Epileptiform activity and neural plasticity in limbic structures. Brain Res 47:262–268

    Article  PubMed  CAS  Google Scholar 

  40. Ranford JC, Coates AR, Henderson B (2000) Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med 2000:1–17

    Article  Google Scholar 

  41. Rao KS (1993) Genomic damage and its repair in young and aging brain. Mol Neurobiol 7:23–48

    Article  PubMed  CAS  Google Scholar 

  42. Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10:2273–2276

    Article  PubMed  CAS  Google Scholar 

  43. Ribak CE, Bakay RA (1999) Neurocytology of a primate model of human temporal lobe epilepsy. Adv Neurol 79:737–741

    PubMed  CAS  Google Scholar 

  44. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  PubMed  CAS  Google Scholar 

  45. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  46. Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann D (1994) Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9:1791–1798

    PubMed  CAS  Google Scholar 

  47. Shinoda S, Araki T, Lan JQ, Schindler CK, Simon RP, Taki W, Henshall DC (2004) Development of a model of seizure-induced hippocampal injury with features of programmed cell death in the BALB/c mouse. J Neurosci Res 76:121–128

    Article  PubMed  CAS  Google Scholar 

  48. Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  PubMed  CAS  Google Scholar 

  49. Thomas G, Souil E, Richard MJ, Saunier B, Polla BS, Bachelet M (2002) Hyperthermia assists survival of astrocytes from oxidative-mediated necrotic cell death. Cell Mol Biol (Noisy-le-grand) 48:191–198

    CAS  Google Scholar 

  50. Vass K, Berger ML, Nowak TS Jr, Welch WJ, Lassmann H (1989) Induction of stress protein HSP70 in nerve cells after status epilepticus in the rat. Neurosci Lett 100:259–264

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto A, Murphy N, Schindler CK, So NK, Stohr S, Taki W, Prehn JH, Henshall DC (2006) Endoplasmic reticulum stress and apoptosis signaling in human temporal lobe epilepsy. J Neuropathol Exp Neurol 65:217–225

    PubMed  CAS  Google Scholar 

  52. Yang T, Namba H, Hara T, Takmura N, Nagayama Y, Fukata S, Ishikawa N, Kuma K, Ito K, Yamashita S (1997) p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 14:1511–1519

    Article  PubMed  CAS  Google Scholar 

  53. Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44:584–591

    Article  PubMed  CAS  Google Scholar 

  54. Zhang X, Boulton AA, Yu PH (1996) Expression of heat shock protein-70 and limbic seizure-induced neuronal death in the rat brain. Eur J Neurosci 8:1432–1440

    Article  PubMed  CAS  Google Scholar 

  55. Zhang X, Cui SS, Wallace AE, Hannesson DK, Schmued LC, Saucier DM, Honer WG, Corcoran ME (2002) Relations between brain pathology and temporal lobe epilepsy. J Neurosci 22:6052–6061

    PubMed  CAS  Google Scholar 

  56. Zhao ZG, Ma QZ, Xu CX (2004) Abrogation of heat-shock protein (HSP) 70 expression induced cell growth inhibition and apoptosis in human androgen-independent prostate cancer cell line PC-3m. Asian J Androl 6:319–324

    PubMed  Google Scholar 

  57. Zoli M, Grimaldi R, Ferrari R, Zini I, Agnati LF (1997) Short- and long-term changes in striatal neurons and astroglia after transient forebrain ischemia in rats. Stroke 28:1049–1058 discussion 1059

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aid NSC93-2320-B-039-023 and CMC92-CI-02 from China Medical University, Taiwan. We gratefully thank the patients for donating surgically removed tissue samples to this study and Dr. Chingju Lee and Dr.Yuk Man Leung for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Hsu, C., Liao, W. et al. Heat shock protein 70 expression in epilepsy suggests stress rather than protection. Acta Neuropathol 115, 219–230 (2008). https://doi.org/10.1007/s00401-007-0297-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0297-3

Keywords

Navigation