Skip to main content

Advertisement

Log in

Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Immunological alterations have been demonstrated in peripheral blood and cerebrospinal fluid of patients with schizophrenia, while previous postmortem studies have provided an inconsistent picture as to the role of microglia in the context of schizophrenia. Microglial activation is a sensitive indicator of changes in the CNS microenvironment, such as inflammatory and neurodegenerative processes. The aim of the present postmortem study was to examine HLA class II (HLA-DR) expression on microglia in brain regions which are particularly relevant for schizophrenia, with regard to hemispheric lateralization. Dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), hippocampus and mediodorsal thalamus (MD) were studied in 16 cases with schizophrenia and 16 control subjects. Immunostaining was found in all brain regions and was not restricted to macrophage-like ameboid cells, but also appeared in ramified cells. Region-specific HLA-DR-positive cell density was not significantly different between cases with schizophrenia and controls. However, ameboid microglial cells were lateralized towards the right hemisphere in healthy subjects but not in the schizophrenia group (P=0.01). Postmortem interval correlated with ramified cell numbers in ACC/DLPFC (P=0.01/0.04) and ameboid cell density in hippocampus (P=0.03). Age, gender, duration of disease, medication dosage, storage delay and whole brain volume had no effect. Single case analysis revealed highly elevated microglial cell numbers in ACC and MD of two schizophrenic patients who had committed suicide during acute psychosis. In conclusion, the present data suggest the absence of microgliosis but decreased cerebral lateralization of ameboid microglia in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams TE, Bodmer JG, Bodmer WF (1983) Production and characterization of monoclonal antibodies recognizing the alpha-chain subunits of human ia alloantigens. Immunology 50:613–624

    PubMed  CAS  Google Scholar 

  2. Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Quirion R, Boksa P (1993) Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem 61:1284–1290

    Article  PubMed  CAS  Google Scholar 

  3. Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C (1998) Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 55:225–232

    Article  PubMed  CAS  Google Scholar 

  4. Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271:126–128

    Article  PubMed  CAS  Google Scholar 

  5. Bo L, Mork S, Kong PA, Nyland H, Pardo CA, Trapp BD (1994) Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol 51:135–146

    Article  PubMed  CAS  Google Scholar 

  6. Borda T, Perez Rivera R, Joensen L, Gomez RM, Sterin-Borda L (2002) Antibodies against cerebral M1 cholinergic muscarinic receptor from schizophrenic patients: molecular interaction. J Immunol 168:3667–3674

    PubMed  CAS  Google Scholar 

  7. Damadzic R, Bigelow LB, Krimer LS, Goldenson DA, Saunders RC, Kleinman JE, Herman MM (2001) A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: absence of significant astrocytosis. Brain Res Bull 55:611–618

    Article  PubMed  CAS  Google Scholar 

  8. DeLisi LE (1999) Regional brain volume change over the life-time course of schizophrenia. J Psychiatr Res 33:535–541

    Article  PubMed  CAS  Google Scholar 

  9. Dollfus S, Razafimandimby A, Delamillieure P, Brazo P, Joliot M, Mazoyer B, Tzourio-Mazoyer N (2005) Atypical hemispheric specialization for language in right-handed schizophrenia patients. Biol Psychiatry 57:1020–1028

    Article  PubMed  Google Scholar 

  10. Epenetos AA, Bobrow LG, Adams TE, Collins CM, Isaacson PG, Bodmer WF (1985) A monoclonal antibody that detects HLA-D region antigen in routinely fixed, wax embedded sections of normal and neoplastic lymphoid tissues. J Clin Pathol 38:12–17

    Article  PubMed  CAS  Google Scholar 

  11. Falkai P, Honer WG, David S, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25:48–53

    Article  PubMed  CAS  Google Scholar 

  12. Falke E, Han LY, Arnold SE (2000) Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 93:103–110

    Article  PubMed  CAS  Google Scholar 

  13. Gorwood P, Pouchot J, Vinceneux P, Puechal X, Flipo RM, De Bandt M, Ades J (2004) Rheumatoid arthritis and schizophrenia: a negative association at a dimensional level. Schizophr Res 66:21–29

    Article  PubMed  CAS  Google Scholar 

  14. Graeber MB, Streit WJ (1990) Perivascular microglia defined. Trends Neurosci 13:366

    Article  PubMed  CAS  Google Scholar 

  15. Gruneberg U, Rich T, Roucard C, Marieke van Ham S, Charron D, Trowsdale J (1997) Two widely used anti-DR alpha monoclonal antibodies bind to an intracellular C-terminal epitope. Hum Immunol 53:34–38

    Article  PubMed  CAS  Google Scholar 

  16. Heim S, Kissler J, Elbert T, Rockstroh B (2004) Cerebral lateralization in schizophrenia and dyslexia: neuromagnetic responses to auditory stimuli. Neuropsychologia 42:692–697

    Article  PubMed  Google Scholar 

  17. Heizmann CW (2004) S100B protein in clinical diagnostics: assay specificity. Clin Chem 50:249–251

    Article  PubMed  CAS  Google Scholar 

  18. Henneberg AE, Horter S, Ruffert S (1994) Increased prevalence of antibrain antibodies in the sera from schizophrenic patients. Schizophr Res 14:15–22

    Article  PubMed  CAS  Google Scholar 

  19. Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev 14:1–34

    Article  PubMed  CAS  Google Scholar 

  20. Hirsch S (2004) Clinical changes measured by [11C](R)-PK11195 PET in patients with psychosis and cognitive decline are associated with impaired event related potential mismatch negativity (abstract from the 12th biennial winter workshop on schizophrenia, Davos, Switzerland). Schizophr Res 67:103

    Google Scholar 

  21. Kowalski J, Labuzek K, Herman ZS (2003) Flupentixol and trifluperidol reduce secretion of tumor necrosis factor-alpha and nitric oxide by rat microglial cells. Neurochem Int 43:173–178

    Article  PubMed  CAS  Google Scholar 

  22. Kreczmanski P, Schmidt-Kastner R, Heinsen H, Steinbusch HW, Hof PR, Schmitz C (2005) Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol (Berl) 109:510–518

    Article  Google Scholar 

  23. Kreutzberg GW (1995) Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 45:357–360

    PubMed  CAS  Google Scholar 

  24. Kurumaji A, Wakai T, Toru M (1997) Decreases in peripheral-type benzodiazepine receptors in postmortem brains of chronic schizophrenics. J Neural Transm 104:1361–1370

    Article  PubMed  CAS  Google Scholar 

  25. Labuzek K, Kowalski J, Gabryel B, Herman ZS (2005) Chlorpromazine and loxapine reduce interleukin-1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 15:23–30

    Article  PubMed  CAS  Google Scholar 

  26. Mai JK, Assheuer J, Paxinos G (2003) Atlas of the human brain. Academic, San Diego

  27. Mattiace LA, Davies P, Dickson DW (1990) Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol 136:1101–1114

    PubMed  CAS  Google Scholar 

  28. McGeer PL, Walker DG, Akiyama H, Yasuhara O, McGeer EG (1994) Involvement of microglia in Alzheimer’s disease. Neuropathol Appl Neurobiol 20:191–192

    PubMed  CAS  Google Scholar 

  29. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol (Berl) 101:249–255

    CAS  Google Scholar 

  30. Nikkila HV, Muller K, Ahokas A, Miettinen K, Rimon R, Andersson LC (1999) Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry 156:1725–1729

    PubMed  CAS  Google Scholar 

  31. Nunes SO, Borelli SD, Matsuo T, Watanabe MA, Itano EN (2005) The association of the HLA in patients with schizophrenia, schizoaffective disorder, and in their biological relatives. Schizophr Res 76:195–198

    Article  PubMed  CAS  Google Scholar 

  32. Pakkenberg B (1993) Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 34:768–772

    Article  PubMed  CAS  Google Scholar 

  33. Paulus W, Bancher C, Jellinger K (1993) Microglial reaction in Pick’s disease. Neurosci Lett 161:89–92

    Article  PubMed  CAS  Google Scholar 

  34. Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  PubMed  CAS  Google Scholar 

  35. Radewicz K, Garey LJ, Gentleman SM, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150

    PubMed  CAS  Google Scholar 

  36. Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C (2002) Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:127–138

    Article  PubMed  Google Scholar 

  37. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  PubMed  CAS  Google Scholar 

  38. Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, Rudolf S, Wandinger KP, Kirchner H (2001) Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry 6:445–449

    Article  PubMed  CAS  Google Scholar 

  39. Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S (2004) In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127:1670–1677

    Article  PubMed  Google Scholar 

  40. Schmitt AB, Brook GA, Buss A, Nacimiento W, Noth J, Kreutzberg GW (1998) Dynamics of microglial activation in the spinal cord after cerebral infarction are revealed by expression of MHC class II antigen. Neuropathol Appl Neurobiol 24:167–176

    Article  PubMed  CAS  Google Scholar 

  41. Schuld A, Hinze-Selch D, Pollmaecher T (2004) Cytokine network in patients with schizophrenia and its significance for the pathophysiology of the illness. Nervenarzt 75:215–226

    Article  PubMed  CAS  Google Scholar 

  42. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  PubMed  CAS  Google Scholar 

  43. Sperner-Unterweger B, Whitworth A, Kemmler G, Hilbe W, Thaler J, Weiss G, Fleischhacker WW (1999) T-cell subsets in schizophrenia: a comparison between drug-naive first episode patients and chronic schizophrenic patients. Schizophr Res 38:61–70

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, Uema T, Takeda M, Amino N (2003) Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol 141:155–164

    Article  PubMed  CAS  Google Scholar 

  45. Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (2000) Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res 885:117–121

    Article  PubMed  CAS  Google Scholar 

  46. van Berckel B, Boellaard R, Caspers E, Cahn W, Lammertsma A, Kahn R (2005) Microglia activation in schizophrenia: an (R)-[11C]-PK11195 positron emission tomography study (abstract from the 2005 international congress on schizophrenia research, Savannah, Georgia). Schizophr Bull 31:448

    Google Scholar 

  47. Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B, Honer WG, Falkai P (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157:34–39

    PubMed  CAS  Google Scholar 

  48. Wagner-Jauregg J (1887) Über die Einwirkung fieberhafter Erkrankungen auf Psychosen. Allg Z Psychiatr 27:93–131

    Google Scholar 

  49. Wierzba-Bobrowicz T, Lewandowska E, Kosno-Kruszewska E, Lechowicz W, Pasennik E, Schmidt-Sidor B (2004) Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 42:157–165

    PubMed  Google Scholar 

  50. Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E (2005) Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 43:81–89

    PubMed  Google Scholar 

  51. Wiesmann M, Wandinger KP, Missler U, Eckhoff D, Rothermundt M, Arolt V, Kirchner H (1999) Elevated plasma levels of S-100b protein in schizophrenic patients. Biol Psychiatry 45:1508–1511

    Article  PubMed  CAS  Google Scholar 

  52. Wright P, Nimgaonkar VL, Donaldson PT, Murray RM (2001) Schizophrenia and HLA: a review. Schizophr Res 47:1–12

    Article  PubMed  CAS  Google Scholar 

  53. Yolken RH, Torrey EF (1995) Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev 8:131–145

    PubMed  CAS  Google Scholar 

  54. Zalcman S, Green-Johnson JM, Murray L, Nance DM, Dyck D, Anisman H, Greenberg AH (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, −2 and −6. Brain Res 643:40–49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Saxony-Anhalt Ministry of Research (XN3594O/0405M, Signaltransduzierende Netzwerke N2), German Ministry of Research (BMBF-NBL3 01ZZ0107, BrainNet) and Stanley Foundation supported the present study. We thank Dr. Alan Richardson-Klavehn for checking the English language of the manuscript. Gabriele Meyer-Lotz and Sieglinde Funke provided excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, J., Mawrin, C., Ziegeler, A. et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol 112, 305–316 (2006). https://doi.org/10.1007/s00401-006-0090-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0090-8

Keywords

Navigation