Acta Neuropathologica

, Volume 108, Issue 6, pp 493–502 | Cite as

Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy

  • Tih Shih Lee
  • Tore Eid
  • Shrikant Mane
  • Jung H. Kim
  • Dennis D. Spencer
  • Ole Petter Ottersen
  • Nihal C. de Lanerolle
Regular Paper

Abstract

The hippocampus of patients with mesial temporal lobe epilepsy is often hardened and shrunken, a condition known as sclerosis. Magnetic resonance imaging reveals an increase in the T2-weighted signal, while diffusion weighted imaging shows a higher apparent diffusion coefficient in sclerotic hippocampi, indicating increased water content. As water transport appears to be coupled to K+ clearance and neuronal excitability [4], the molecular basis of the perturbed water homeostasis in the sclerotic hippocampus was explored. The expression of aquaporin-4 (AQP-4), the predominant water channel in the brain, was studied with quantitative real time PCR analysis, light microscopic immunohistochemistry and high-resolution immunogold labeling. A significant increase in AQP-4 was observed in sclerotic, but not in non-sclerotic, hippocampi obtained from patients with medically intractable temporal lobe epilepsy. This increase was positively correlated with an increase in the astrocyte marker glial fibrillary acidic protein. AQP-4 was localized to the plasma membranes of astrocytes including the perivascular end-feet. Gene expression associated with increased AQP-4 was evaluated by high throughput gene expression analysis using Affymetrix GeneChip U133A and related gene networks were investigated with Ingenuity Pathways Analysis. AQP-4 expression was associated with a decrease in expression of the dystrophin gene, a protein implicated in the anchoring of AQP-4 in perivascular endfeet. The decreased expression of dystrophin may indicate a loss of polarity in the distribution of AQP-4 in astrocytes. We conclude that the perturbed expression of AQP-4 and dystrophin may be one factor underlying the loss of ion and water homeostasis in the sclerotic hippocampus and hypothesize that the reported changes may contribute to the epileptogenic properties of the sclerotic tissue.

Keywords

Temporal lobe epilepsy Aquaporin-4 Hippocampal sclerosis Astrocytes GeneChip microarray analysis 

References

  1. 1.
    Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen M (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16CrossRefPubMedGoogle Scholar
  2. 2.
    Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001Google Scholar
  3. 3.
    Amiry-Moghaddam M, Otsuka H, Hurn PD, Traystman RJ, Haug F-M, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111CrossRefPubMedGoogle Scholar
  4. 4.
    Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, Lanerolle NC de, Nagelhus EA, Froehner SC, Agre P, Ottersen OP (2003) Dealyed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620CrossRefPubMedGoogle Scholar
  5. 5.
    Amiry-Moghaddam M, Xue R, Haug F-M, Neeley SP, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP (2004) Alpha syntrophin deletion removes the perivascular but not the endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J express article 10.1096/fj.03–0869fjeGoogle Scholar
  6. 6.
    Andrew DA (1991) Seizure and acute osmotic change: clinical and neurophysiological aspects. J Neurol Sci 101:7–18CrossRefPubMedGoogle Scholar
  7. 7.
    Aoki K, Uchihara T, Tsuchiya K, Nakamura A, Ikeda K, Wakayama Y (2003) Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathol. 106:121–124Google Scholar
  8. 8.
    Badaut J, Nehlig A, Verbavatz J-M, Stoeckel M-E, Freund-Mercier M-J, Lasbennes F (2000) Hypervascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution of aquaporin-4 and markers of energy metabolism. J Neuroendocrinol 12:960–969CrossRefPubMedGoogle Scholar
  9. 9.
    Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378CrossRefPubMedGoogle Scholar
  10. 10.
    Benjamini Y, Hochberg Y (1955) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  11. 11.
    Blake DJ, Hawkes R, Benson MA, Beesley PW (1999) Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 147:645–657CrossRefPubMedGoogle Scholar
  12. 12.
    Bordey A, Sontheimer H (1998) Properties of human glial cells associated with epileptic tissue. Epilepsy res. 32:286–303Google Scholar
  13. 13.
    Bratz E (1899) Ammonshornbefunde bei Epileptikern. Arch Psychiatr Nervenkr 32:820–835Google Scholar
  14. 14.
    Bronen RA, Cheung G, Charles JT, Kim JH, Spencer DD, Spencer SS, Sze G, McCarthy G (1991) Imaging findings in hippocampal sclerosis: correlation with pathology. AJNR 12:933–940Google Scholar
  15. 15.
    De Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395CrossRefPubMedGoogle Scholar
  16. 16.
    De Lanerolle NC, Eid T, Campe G von, Kovacs I, Spencer DD, Brines ML (1998) Glutamate receptor subunits GluR1 and GluR2/3 distribution shows reorganization in the human epileptogenic hippocampus. Eur J Neurosci 10:1687–1703CrossRefPubMedGoogle Scholar
  17. 17.
    De Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687CrossRefPubMedGoogle Scholar
  18. 18.
    De la Rosa A, Zhang P, Naray-Fejes- Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37824–37839Google Scholar
  19. 19.
    Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115:2801–2803PubMedGoogle Scholar
  20. 20.
    Eid T, Brines M, Cerami A, Spencer DD, Kim JH, Schweitzer JS, Ottersen OP, Lanerolle NC de (2004) Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exp Neurol (in press)Google Scholar
  21. 21.
    Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JCK, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, Lanerolle NC de (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial-temporal lobe epilepsy. Lancet (in press)Google Scholar
  22. 22.
    Farman N, Boulkroun S, Courtois-Coutry N (2002) Sgk: an old enzyme revisited. J Clin Invest 110:1233–1234CrossRefPubMedGoogle Scholar
  23. 23.
    Frigeri A, Nicchia GP, Nico B, Quondamatteo F, Herken R, Roncali L, Svelto M (2001) Aquoporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15:90–98CrossRefPubMedGoogle Scholar
  24. 24.
    Grotzer MA, Patti R, Geoerger B, Eggert A, Chou TT, Phillips PC (2000) Biological stability of RNA isolated from RNAlater- treated brain tumor and neuroblastoma xenografts. Med Pediatr Oncol 34:438–442CrossRefPubMedGoogle Scholar
  25. 25.
    Hintkerkeuser S, Schroder W, Hager G, Seifert G, Blumcke I, Elger CE, Schramm J, Steinhauser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096CrossRefPubMedGoogle Scholar
  26. 26.
    Hjelle OP, Chaudhry FA, Ottersen OP (1994) Antisera to glutathione: characterization and immunocytochemical application to the rat cerebellum. Eur J Neurosci 6:794–804Google Scholar
  27. 27.
    Hsu S, Raine L, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  28. 28.
    Hugg JW, Butterworth EJ, Kuzniecky RI (1999) Diffusion mapping applied to mesial temporal lobe epilepsy. Neurology 53:173–176CrossRefPubMedGoogle Scholar
  29. 29.
    Kim JH, Guimaraes PO, Shen M-Y, Masukawa LM, Spencer DD (1990) Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas. Acta Neuropathol 80:41–45PubMedGoogle Scholar
  30. 30.
    Kuhurana TS, Watkins SC, Kunkel LM (1992) The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain. J Cell Biol 119:357–366CrossRefPubMedGoogle Scholar
  31. 31.
    Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151CrossRefPubMedGoogle Scholar
  32. 32.
    Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, Lopez JF, Avelar A, Shokoohi V, Chung T, Mesarwi O, Jones EG, Watson SJ, Bunney WE, Meyers RM (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Human Molecular Genetics published online:doi: 10.1093/hmg/ddh1065Google Scholar
  33. 33.
    Lie AA, Schroder R, Blumcke I, Magin TW, Wiestler OD, Elger CE (1998) Plectin in the human central nervous system: predominant expression at pia/glia and endothelia/glia interfaces. Acta Neuropathol 96:215–221CrossRefPubMedGoogle Scholar
  34. 34.
    Mizuno Y, Thompson TG, Guyon JR, Lodov HGW, Brosius M, Imamura M, Ozawa E, Watkins SC, Kunkel LM (2001) Desmuslin, an intermediate filament protein that interacts with α-dystrobrevin and desmin. Proc Natl Acad Sci USA 98:6156–6161CrossRefPubMedGoogle Scholar
  35. 35.
    Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nilsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membane domains. Glia 26:47–54CrossRefPubMedGoogle Scholar
  36. 36.
    Náray-Fejes-Tóth N (1999) Sgk: a new player (star?) in the early action of aldosterone. News Physiol Sci 14:274–275Google Scholar
  37. 37.
    Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180PubMedGoogle Scholar
  38. 38.
    O’Connor ER, Sontheimer H, Spencer DD, Lanerolle NC de (1998) Astrocytes from human hippocampal epileptogenic foci exhibit action potential-like responses. Epilepsia 39:347–354PubMedGoogle Scholar
  39. 39.
    Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710CrossRefPubMedGoogle Scholar
  40. 40.
    Poon E, Howman EV, Newey SE, Davies KE (2002) Association of syncoilin and desmin. J Biol Chem 277:3433–3430CrossRefPubMedGoogle Scholar
  41. 41.
    Ramani P, Bradley NJ, Fletcher CD (1990) QBEND/10, a new monoclonal antibody to endothelium: assessment of its diagnostic utility in paraffin sections. Histopathology 17:237–242PubMedGoogle Scholar
  42. 42.
    Rowntree LG (1926) The effects on mammals of the administration of excessive quantities of water. J Pharmacol Exp Ther 29:139–159Google Scholar
  43. 43.
    Seifert G, Hüttmann K, Schramm J, Steinhäuser C (2004) Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon’s horn sclerosis. J Neurosci 24:1996–2003CrossRefPubMedGoogle Scholar
  44. 44.
    Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10:631–675Google Scholar
  45. 45.
    Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly R (1984) Access to posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 15:667–671PubMedGoogle Scholar
  46. 46.
    Spencer SS, Katz A (1990) Arriving at the surgical options for intractable seizures. Semin Neurol 10:422–430PubMedGoogle Scholar
  47. 47.
    Theodore W (1991) What is uncontrolled epilepsy, and who should be referred for surgery. In: Spencer SS, Spencer DD (eds) Surgery for epilepsy. Blackwell, Boston, pp 3–17Google Scholar
  48. 48.
    Thompson TG, Chan Y-M, Hack AA, Brosius M, Rajala M, Lidov HGW, McNally EM, Watkins S, Kunkel LM (2000) Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein. J Cell Biol 148:115–126CrossRefPubMedGoogle Scholar
  49. 49.
    Vajda Z, Promeneur D, Dóczi T, Sulyok E, Frøkiaer J, Ottersen OP, Nielsen S (2000) Increased aquaporin-4 immunoreactivity in rat brain in response to systemic hyponatremia. Biochem Biophys Res Commun 270:495–503CrossRefPubMedGoogle Scholar
  50. 50.
    Vajda Z, Pedersen M, Füchtbauer E-M, Wertz K, Stødkilde-Jørgensen H, Sulyok E, Dóczi T, Neely JD, Agre P, Frøkiaer J, Nielsen M (2002) Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci USA 99:13131–13136CrossRefPubMedGoogle Scholar
  51. 51.
    Waldegger S, Barth P, Raber G, Lang F (1997) Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sci USA 94:4440–4445CrossRefPubMedGoogle Scholar
  52. 52.
    Warth A, Kröger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 107:311–318Google Scholar
  53. 53.
    Weishmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD (1999) Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging 17:29–36CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tih Shih Lee
    • 1
  • Tore Eid
    • 2
  • Shrikant Mane
    • 3
  • Jung H. Kim
    • 4
  • Dennis D. Spencer
    • 2
  • Ole Petter Ottersen
    • 5
  • Nihal C. de Lanerolle
    • 2
  1. 1.Department of PsychiatryYale University School of MedicineNew HavenUSA
  2. 2.Department of NeurosurgeryYale University School of MedicineNew HavenUSA
  3. 3.Keck Biotechnology CenterYale University School of MedicineNew HavenUSA
  4. 4.Department of PathologyYale University School of MedicineNew HavenUSA
  5. 5.Center for Molecular Biology and Neuroscience and Department of AnatomyUniversity of OsloOsloNorway

Personalised recommendations