Skip to main content

Advertisement

Log in

Neuropathological analysis in spinal muscular atrophy type II

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We performed a neuropathological analysis, including in situ nick end labeling (ISEL) and immunohistochemistry, of two cases of clinicogenetically confirmed infantile spinal muscular atrophy (SMA) type II. Both cases showed severe reduction of the motor neurons and gliosis in the spinal cord and brain stem, although the occurrences of central chromatolysis and ballooned neurons were not frequent. Clark's and lateral thalamic nuclei, which are usually altered in SMA type I, were spared, whereas Betz cells in the precentral gyrus and large myelinated fibers in the lateral funiculus were reduced in number. Regarding apoptosis, only the younger case demonstrated a few ISEL-positive nuclei in the dorsal horn, with reduced Bcl-x expression level in the Purkinje cells. Unlike SMA type I, the expression of neurofilaments was not disturbed and the reduction in synaptophysin expression level in the anterior horn was mild. An oxidative stress-related product was deposited in atrophic motor neurons in the spinal cord, and neurons with nuclei immunoreactive for 8-hydroxy-2'-deoxyguanosine were found in the lateral thalamus. In contrast, the expression of glial glutamate transporters was not altered. These data suggest that oxidative stress and, to a lesser extent, apoptotic cell death, but not disturbed neurofilament metabolism or excitotoxicity, may be involved in neurodegeneration in SMA type II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3

References

  1. Aberfeld DC, Namba T (1969) Progressive opthalmoplegia in Kugelberg-Welander disease. Arch Neurol 20:253–256

    PubMed  Google Scholar 

  2. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH Jr (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    PubMed  Google Scholar 

  3. Dubowitz V (1995) Disorders of the lower motor neurone. The spinal muscular atrophy. In: Dubowitz V (ed) Muscle disorders in childhood, 2nd edn. Saunders, London, pp 325–369

  4. Gardner-Medwin D, Hudgson P, Walton JN (1967) Benign spinal muscular atrophy arising in childhood and adolescence. J Neurol Sci 5:121–158

    Article  PubMed  Google Scholar 

  5. Hayashi M, Arai N, Murakami T, Morimatsu Y, Oda M, Matsuyama H (1998) A study of cell death in Werdnig-Hoffmann disease brain. Neurosci Lett 243:117–120

    Article  PubMed  Google Scholar 

  6. Hayashi M, Araki S, Arai N, Kumada S, Itoh M, Tamagawa K, Oda M, Morimatsu Y (2002) Oxidative stress and disturbed glutamate transport in spinal muscular atrophy. Brain Dev 24:770–775

    Article  PubMed  Google Scholar 

  7. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    CAS  PubMed  Google Scholar 

  8. Ikemoto A, Hirano A, Matsumoto S, Akiguchi I, Kimura J (1996) Synaptophysin expression in the anterior horn of Werdnig-Hoffmann disease. J Neurol Sci 136:94–100

    Article  PubMed  Google Scholar 

  9. Ikuta F, Ohama E, Nakanishi T, Mannen T, Toyokura Y (1979) Postmortem findings in a case of KW disease; presence of underdeveloped Schwann cells and axons. In: Japan Medical Research Foundation (ed) Amyotrophic lateral sclerosis. University of Tokyo Press, Tokyo, pp 277–284

  10. Iwahashi h, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (1997) Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390:413–417

    Article  PubMed  Google Scholar 

  11. Iwata M, Hirano A (1978) A neuropathological study of the Werdnig-Hoffmann disease. Neurol Med Chir 8:40–53

    Google Scholar 

  12. Kato S, Hirano A (1990) Ubiquitin and phosphorylated neurofilament epitopes in ballooned neurons of the extraocular muscle nuclei in a case of Werdnig-Hoffmann disease. Acta Neuropathol 80:334–337

    CAS  PubMed  Google Scholar 

  13. Kohn R (1968) Postmortem findings in a case of Wohlfart-Kugelberg-Welander disease. Confin Neurol 30:253–260

    PubMed  Google Scholar 

  14. Kumada S, Hayashi M, Mizuguchi M, Nakano I, Morimatsu Y, Oda M (2000) Cerebellar degeneration in hereditary dentatorubral-pallidoluysian atrophy and Machado-Joseph disease. Acta Neuropathol 99:48–54

    PubMed  Google Scholar 

  15. Lee S, Park YD, Yen SHC, Ksiezak-Redling H, Goldman JE, Dickson DW (1988) A study of infantile motor neuron disease with neurofilament and ubiquitin immunocytochemistry. Neuropediatrics 20:107–111

    Google Scholar 

  16. Lefebvre S, Burglen L, Revoullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Paslier DL, Frezal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    CAS  PubMed  Google Scholar 

  17. Merry DE, Veis DJ, Hickey WF, Korsmeyer SJ (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311

    CAS  PubMed  Google Scholar 

  18. Murayama S, Bouldin TW, Suzuki K (1991) Immunocytochemical and ultrastructural studies of Werdnig-Hoffmann disease. Acta Neuropathol 81:408–417

    PubMed  Google Scholar 

  19. Nevo Y, Kramer U, Legum C, Shomrat R, Fatal A, Soffer D, Harel S, Shapira Y (1998) SMA type II unrelated to chromosome 5q13. Am J Med Genet 75:193–195

    Article  PubMed  Google Scholar 

  20. Nunomura A, Perry G, Alive G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    CAS  PubMed  Google Scholar 

  21. Osawa M, Shishikura K (1991) Werdnig-Hoffmann disease and variants. Handb Clin Neurol 15:51–80

    Google Scholar 

  22. Paulson GW, Liss L, Sweeney PJ (1980) Late onset spinal muscle atrophy—a sex linked variant of Kugelberg-Welander. Acta Neurol Scand 61:49–55

    PubMed  Google Scholar 

  23. Rothstein JD, Kammen M van, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    CAS  PubMed  Google Scholar 

  24. Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X, Salih M, Aubry H, Tamai K, Guan X, Ioannou P, Crawford TO, Joung PJ de, Surh L, Ikeda J, Korneluk RG, MacKenzie A (1995) The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80:167–178

    CAS  PubMed  Google Scholar 

  25. Sayre LM, Zalasko DA, Harris PLR, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 68:2092–2097

    CAS  PubMed  Google Scholar 

  26. Shishikura K, Hara M, Sasaki Y, Misugi K (1983) A neuropathological study of Werdnig-Hoffmann disease with special reference to the thalamus and posterior roots. Acta Neuropathol (Berl) 60:99–106

    Google Scholar 

  27. Simic G, Seso-Simic D, Lucassen PJ, Islam A, Krsnik Z, Cviko A, Jelasic D, Barisic N, Winbland B, Kostovic I, Kruslin B (2000) Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 59:398–407

    Google Scholar 

  28. Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF (2002) Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain 125:1624–1634

    Article  PubMed  Google Scholar 

  29. Soubrouillard C, Pellissier JF, Lepidi H, Mancini J, Rougon G, Figarella-Branger D (1995) Expression of developmentally regulated cytoskeleton and cell surface proteins in childhood spinal muscular atrophy. J Neurol Sci 133:155–163

    Article  PubMed  Google Scholar 

  30. Tews DS, Goebel HH (1996) DNA fragmentation and bcl-2 expression in infantile spinal muscular atrophy. Neuromuscl Disord 6:265-273

    Article  Google Scholar 

  31. Tews DS, Goebel HH (1997) Apoptosis-related proteins in skeletal muscle fibers of spinal muscular atrophy. J Neuropathol Exp Neurol 56:150–156

    CAS  PubMed  Google Scholar 

  32. Towfighi J, Young RSK, Ward RM (1985) Is Werdnig-Hoffmann disease a pure lower motor neuron disorder? Acta Neuropathol (Berl) 65:270–280

    Google Scholar 

  33. Toyokuni S (1999) Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 49:91–102

    Article  PubMed  Google Scholar 

  34. Winder TR, Auer RN (1989) Sensory neuron degeneration in familial Kugelberg-Welander disease. Can J Neurol Sci 16:67–70

    PubMed  Google Scholar 

  35. Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schoneborn S, Wienker T, Zerres K (1999) Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implication for genetic counseling. Am J Hum Genet 64:1340–1356

    CAS  PubMed  Google Scholar 

  36. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Araki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, S., Hayashi, M., Tamagawa, K. et al. Neuropathological analysis in spinal muscular atrophy type II. Acta Neuropathol 106, 441–448 (2003). https://doi.org/10.1007/s00401-003-0743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0743-9

Keywords

Navigation