Skip to main content

Elektromagnetische Interferenzen bei 3-D-Mappingverfahren

Electromagnetic interference in 3D-mapping procedures

Zusammenfassung

Katheterablationen sind heute ein weit verbreitetes Verfahren zur Behandlung von Herzrhythmusstörungen. Hierfür sind genaue anatomische Kenntnisse sowohl im Vorfeld als auch während der Untersuchung erforderlich und eine wichtige Voraussetzung zur zielgerichteten Behandlung. Während zu Beginn der Ära von katheterinterventionellen Behandlungen die Fluoroskopie das einzige und gängige Visualisierungsmittel war, sind seit Mitte der 1990er Jahre kontinuierlich 3‑D-Mappingssysteme zur nichtfluoroskopischen Untersuchung von Patienten (weiter)entwickelt worden. Die sachgemäße Anwendung dieser 3‑D-Systeme, die Katheter nichtfluoroskopisch visualisieren und Arrhythmiemechanismen meist sehr detailliert identifizieren, leistet heute einen bedeutsamen Beitrag zur erfolgreichen katheterinterventionellen Behandlung von Rhythmusstörungen. Vor allem Patienten mit ventrikulären Arrhythmien sind jedoch nicht selten Träger elektronischer Devices wie Defibrillatoren oder teilweise hämodynamischen Unterstützungssystemen. Implantierbare Devices führen zu elektromagnetischen Interferenzen, die die Diagnostik und Behandlung im Rahmen elektrophysiologischen Untersuchungen und Ablationen erschweren können. Dieser Artikel diskutiert die Widrigkeiten und Erfahrungen in Zusammenhang mit magnetbasierten 3‑D-Systemen sowie implantierbaren elektromagnetisch aktiven „cardiac devices“.

Abstract

Catheter-based ablation is nowadays a safe and widespread procedure for the treatment of cardiac arrhythmia. This requires exact anatomical knowledge both before and during the examination and is an important prerequisite for targeted treatment. At the beginning of the era of interventional catheter-based treatment, fluoroscopy was the only and usual means of visualization, whereas in the middle of the 1990s continuous 3D-mapping systems were developed for the non-fluoroscopic examination of patients. The correct use of these 3‑D systems, which non-fluoroscopically visualize the catheter and mostly identify mechanisms of arrhythmia in great detail, nowadays makes an important contribution to successful interventional catheter treatment of arrhythmia; however, it is not uncommon for patients with ventricular arrhythmia to also carry implanted electronic devices, such as pacemakers, defibrillators or less frequently left ventricular hemodynamic support systems. All implantable devices lead to electromagnetic interferences, which can complicate the diagnostics and treatment during electrophysiological examinations and ablation. This article addresses the adversities and experiences associated with magnet-based 3D systems and implantable electromagnetically active cardiac devices.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Efstathopoulos EP, Katritsis DG, Kottou S et al (2006) Patient and staff radiation dosimetry during cardiac electrophysiology studies and catheter ablation procedures: a comprehensive analysis. Europace 8:443–448

    Article  Google Scholar 

  2. Kim KP, Miller DL (2009) Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: a review. Radiat Prot Dosimetry 133:227–233

    Article  Google Scholar 

  3. Smilowitz NR, Balter S, Weisz G (2013) Occupational hazards of interventional cardiology. Cardiovasc Revasc Med 14(4):223–228

    Article  Google Scholar 

  4. Journy N, Dreuil S, Rage E, De Zordo-Banliat F, Bonnet D, Hascoët S, Malekzadeh-Milani S, Petit J, Laurier D, Bernier MO, Baysson H (2018) Projected future cancer risks in children treated with fluoroscopy-guided cardiac catheterization procedures. Circ Cardiovasc Interv 11(11):e6765

    Article  Google Scholar 

  5. Gepstein L, Hayam G, Ben-Haim SA (1997) A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 95(6):1611–1622

    CAS  Article  Google Scholar 

  6. De Ponti R, Zardini M, Tritto M, Fang P, Caravati F, Salerno-Uriarte JA (1999) Sistema non fluoroscopico per mappaggio cardiaco elettroanatomico tridimensionale (CARTO) [Non-fluoroscopic system for the tridimensional electroanatomical heart mapping (CARTO)]. Cardiologia 44 Suppl 1(Pt 1):387–390

    PubMed  Google Scholar 

  7. Medical Advisory Secretariat (2006) Advanced electrophysiologic mapping systems: an evidence-based analysis. Ont Health Technol Assess Ser 6(8):1–101

    PubMed Central  Google Scholar 

  8. Eckardt L, Frommeyer G, Sommer P, Steven D, Deneke T, Estner HL, Kriatselis C, Kuniss M, Busch S, Tilz RR, Bonnemeier H, von Bary C, Voss F, Meyer C, Thomas D, Neuberger HR (2018) Updated survey on interventional electrophysiology: 5‑year follow-up of infrastructure, procedures, and training positions in Germany. JACC Clin Electrophysiol 4(6):820–827

    Article  Google Scholar 

  9. Ellermann C, Frommeyer G, Eckardt L (2018) Hochauflösendes 3‑D-Mapping: Chancen und Limitationen des Rhythmia™-Systems. Herzschrittmacherther Elektrophysiol 29(3):284–292

    Article  Google Scholar 

  10. Verband Deutscher Elektrotechniker (2016) DIN EN 60601-1‑2. In: Garbe H (Hrsg) Elektromagnetische Verträglichkeit emv: Internationale Fachmesse und Kongress für Elektromagnetische Verträglichkeit, Düsseldorf, 23.–25.02.2016 Apprimus, Aachen

  11. Aryana A, Sarcon A, Bowers MR, O’Neill PG, Gandhavadi M, d’Avila A (2022) Three-dimensional mapping, recording and ablation in simulated and induced ventricular tachyarrhythmias during mechanical circulatory support using the percutaneous heart pump. J Interv Card Electrophysiol. https://doi.org/10.1007/s10840-021-01098-5

    Article  PubMed  Google Scholar 

  12. Lüthje L, Vollmann D, Seegers J, Sohns C, Hasenfuss G, Zabel M (2010) Interference of remote magnetic catheter navigation and ablation with implanted devices for pacing and defibrillation. Europace 12(11):1574–1580

    Article  Google Scholar 

  13. Jagielski K, Kraus T, Stunder D (2021) Interference of cardiovascular implantable electronic devices by static electric and magnetic fields. Expert Rev Med Devices 18(4):395–405

    CAS  Article  Google Scholar 

  14. Hayes D, Holmes D, Gray J (1987) Effect of 1.5 T nuclear magnetic resonance scanner on implanted permanent pacemakers. J Am Coll Cardiol 10:782–786

    CAS  Article  Google Scholar 

  15. Fontaine JM, Mohamed FB, Gottlieb C, Callans DJ, Marchlinski FE (1998) Rapid ventricular pacing in a pacemaker patient undergoing magnetic resonance imaging. Pacing Clin Electrophysiol 21(6):1336–1339

    CAS  Article  Google Scholar 

  16. Gordon JS, Maynes EJ, O’Malley TJ, Pavri BB, Tchantchaleishvili V (2021) Electromagnetic interference between implantable cardiac devices and continuous-flow left ventricular assist devices: a review. J Interv Card Electrophysiol 61(1):1–10

    Article  Google Scholar 

  17. Buiatti A, Pavaci H, Deisenhofer I, Kolb C (2013) Electromagnetic interference between a three-dimensional cardiac mapping system and an implantable cardioverter defibrillator. Clin Res Cardiol 102(10):781–783

    Article  Google Scholar 

  18. Oswald H, Schultz-Wildelau C, Gardiwal A, Lüsebrink U, König T, Meyer A, Duncker D, Pichlmaier MA, Klein G, Strüber M (2010) Implantable defibrillator therapy for ventricular tachyarrhythmia in left ventricular assist device patients. Eur J Heart Fail 12(6):593–599

    Article  Google Scholar 

  19. Elvin Gul E, Azizi Z, Alipour P, Haseeb S, Malcolm R, Terricabras M, Sanchez Somonte P, Tsang B, Khaykin Y, Wulffhart Z, Verma A, Pantano A (2021) Fluoroless catheter ablation of atrial fibrillation: integration of intracardiac echocardiography and cartosound module. J Atr Fibrillation 14(2):20200477

    Article  Google Scholar 

  20. Ballout JA, Wazni OM, Tarakji KG, Saliba WI, Kanj M, Diab M, Bhargava M, Baranowski B, Dresing TJ, Callahan TD, Cantillon DJ, Rickard J, Martin DO, Varma N, Niebauer MJ, Chung MK, Tchou PJ, Lindsay BD, Hussein AA (2020) Catheter ablation in patients with cardiogenic shock and refractory ventricular tachycardia. Circ Arrhythm Electrophysiol 13(5):e7669

    CAS  Article  Google Scholar 

  21. Virk SA, Keren A, John RM, Santageli P, Eslick A, Kumar S (2019) Mechanical circulatory support during catheter ablation of ventricular tachycardia: indications and options. Heart Lung Circ 28(1):134–145

    Article  Google Scholar 

  22. Reddy YM, Chinitz L, Mansour M, Bunch TJ, Mahapatra S, Swarup V, Di Biase L, Bommana S, Atkins D, Tung R, Shivkumar K, Burkhardt JD, Ruskin J, Natale A, Lakkireddy D (2014) Percutaneous left ventricular assist devices in ventricular tachycardia ablation: multicenter experience. Circ Arrhythm Electrophysiol 7(2):244–250

    Article  Google Scholar 

  23. Schade A, Nentwich K, Deneke T (2014) Catheter ablation of electrical storm in a patient with left ventricular assist device. Herzschrittmacherther Elektrophysiol 25(2):102–104

    Article  Google Scholar 

  24. Cantillon DJ, Bianco C, Wazni OM, Kanj M, Smedira NG, Wilkoff BL, Starling RC, Saliba WI (2012) Electrophysiologic characteristics and catheter ablation of ventricular tachyarrhythmias among patients with heart failure on ventricular assist device support. Heart Rhythm 9(6):859–864

    Article  Google Scholar 

  25. Blockhaus C, Waibler HP, Gülker JE, Meyer F, Klues H, Bufe A, Shin DI (2018) Electromagnetic interference between left ventricular assist device and a three-dimensional mapping system overcome by “hot mapping”. ASAIO J 64(4):e61–e63

    Article  Google Scholar 

  26. Vaidya VR, Desimone CV, Madhavan M, Noheria A, Shahid M, Walters J, Ladewig DJ, Mikell SB, Johnson SB, Suddendorf SH, Asirvatham SJ (2014) Compatibility of electroanatomical mapping systems with a concurrent percutaneous axial flow ventricular assist device. J Cardiovasc Electrophysiol 25(7):781–786

    Article  Google Scholar 

  27. Miller AC, Evans AC, Revenaugh J, Weiss JP, Reid BB, Kfoury AG (2015) Combined use of TandemHeart percutaneous ventricular assist device and Stereotaxis magnetic navigation during cardiac ablation procedure. Heart Rhythm Case Rep 2(1):14–16

    Google Scholar 

  28. Liang D, Taeschler D, Goepfert C, Arnold P, Zurbuchen A, Sweda R, Reichlin T, Tanner H, Roten L, Haeberlin A (2019) Radiofrequency ablation lesion assessment using optical coherence tomography—a proof-of-concept study. J Cardiovasc Electrophysiol 30(6):934–940

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Güner.

Ethics declarations

Interessenkonflikt

F. Güner, P. Leitz, C. Ellermann, J. Köbe, P.S. Lange, J. Wolfes, B. Rath, F. Doldi, K. Willy, G. Frommeyer und L. Eckardt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Güner, F., Leitz, P., Ellermann, C. et al. Elektromagnetische Interferenzen bei 3-D-Mappingverfahren. Herzschr Elektrophys 33, 290–296 (2022). https://doi.org/10.1007/s00399-022-00883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-022-00883-7

Schlüsselwörter

  • Elektroanatomisches Mapping
  • Herzschrittmacher
  • Implantierbarer Kardioverter-Defibrillator
  • Elektromagnetische Interferenz
  • Linksventrikuläre Unterstützungssysteme

Keywords

  • Electromagnetic mapping
  • Cardiac pacemaker, artificial
  • Implantable cardioverter defibrillator
  • Electromagnetic interference
  • Left ventricular support systems