Skip to main content

Simulatoren und Simulatortraining in der interventionellen Elektrophysiologie

Simulators and simulator training in interventional electrophysiology

Zusammenfassung

Simulatoren und Simulatortraining sind von großer Bedeutung in vielen Bereichen der Industrie und Medizin. In der interventionellen Kardiologie stehen Simulatoren zur Verfügung, um spezielle Techniken zu erlernen oder auch um das Handling von Komplikationen im ganzen Team zu üben. In der Elektrophysiologie gibt es aktuell erste Ansätze, um Simulatoren gezielt zum Training einzusetzen. Ein realitätsnahes Simulatorsystem existiert bisher in der Elektrophysiologie nicht.

Abstract

Simulators and simulator training are commonly used in many areas of industry and medicine. Simulators offer excellent training modalities for interventional cardiology to practice certain procedures and the handling of associated complications. In the field of electrophysiology, there are currently initial approaches to using simulators specifically for training purposes. A realistic simulator system does not yet exist in electrophysiology.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Manolopoulos PP, Chatzidakis S, Vasilakou A, Balta M, Ntourakis D (2022) A standardized workshop for peer-teaching simple interrupted sutures to medical students: analysis of the student factors that affect outcomes. J Invest Surg 35:1379–1384. https://doi.org/10.1080/08941939.2022.2045394

    Article  PubMed  Google Scholar 

  2. Dayal R, Faries PL, Lin SC et al (2004) Computer simulation as a component of catheter-based training. J Vasc Surg 40:1112–1117. https://doi.org/10.1016/j.jvs.2004.09.028

    Article  PubMed  Google Scholar 

  3. Aliev R, Panfilov A (1996) A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301

    Article  Google Scholar 

  4. Dawson S, Cotin S, Meglan D, Shaffer D, Ferrell M (2000) Designing a computer-based simulator for interventional cardiology training. Cathet Cardiovasc Intervent 51(4):522–527

    CAS  Article  Google Scholar 

  5. Trayanova NA, Chang KC (2016) How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 594(9):2483–2502

    CAS  Article  Google Scholar 

  6. Fastl TE, Tobon-Gomez C, Crozier A et al (2018) Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med Image Anal 47:180–190. https://doi.org/10.1016/j.media.2018.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goette A, Kalman JM, Aguinaga L et al (2016) EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace 18:1455–1490

    Article  Google Scholar 

  8. Plank G, Loewe A, Neic A et al (2021) The openCARP simulation environment for cardiac electrophysiology. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2021.106223

    Article  PubMed  Google Scholar 

  9. Sra J, Krum D, Malloy A et al (2005) Registration of three-dimensional left atrial computed tomographic images with projection images obtained using fluoroscopy. Circulation 112:3763–3768

    Article  Google Scholar 

  10. Talbot H, Spadoni F, Duriez C et al (2014) Interactive training system for interventional electrocardiology procedures. 6th International Symposium on Biomedical Simulation—ISBMS, Strabsourg, France, S 11–19 https://doi.org/10.1007/978-3-319-12057-7_2 (hal-01078209)

    Book  Google Scholar 

  11. Pashakhanloo F, Herzka DA, Halperin H, McVeigh ER, Trayanova NA (2018) Role of three-dimensional architecture of scar and surviving tissue in ventricular tachycardia: insights from high-resolution ex vivo porcine models. Circ Arrhythm Electrophysiol 11:e6131. https://doi.org/10.1161/CIRCEP.117.006131

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bertails F, Audoly B, Cani MP et al (2006) Super-helices for predicting the dynamics of natural hair. ACM Trans Graph 25:1180–1187

    Article  Google Scholar 

  13. Ullah W, Hunter RJ, Finlay M, Earley MJ (2017) Validation of a high-fidelity electrophysiology simulator and development of a proficiency-based simulator training program. Simul Healthc 12:41–46

    Article  Google Scholar 

  14. https://vascularnews.com/cathi-joins-with-vss-to-launch-worlds-first-online-training-programme-for-endovascular-simulation/

  15. https://www.youtube.com/watch?v=5J-HdmDgMEk

  16. http://svtsim.com/svtsim_doc.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Goette.

Ethics declarations

Interessenkonflikt

A. Goette: Speaker fees von Abbott, Astra Zeneca, Bayer Health Care, Berlin Chemie, Biotronik, Boehringer Ingelheim, BMS/Pfizer, Boston Scientific, Daiichi-Sankyo, Medtronic, und Omeicos. V. Rickert und S. Brandner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

D. Duncker, Hannover

V. Johnson, Gießen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goette, A., Rickert, V. & Brandner, S. Simulatoren und Simulatortraining in der interventionellen Elektrophysiologie. Herzschr Elektrophys (2022). https://doi.org/10.1007/s00399-022-00882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00399-022-00882-8

Schlüsselwörter

  • Ablation
  • Arrhythmie
  • Elektrophysiologie
  • Katheter
  • Training

Keywords

  • Ablation
  • Arrhythmia
  • Electrophysiology
  • Catheter
  • Training