Skip to main content
Log in

Big Data in electrophysiology

Big data in der Elektrophysiologie

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

An Erratum to this article was published on 30 March 2022

This article has been updated

Abstract

The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with a granularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine.

Zusammenfassung

Die Menge generierter und erfasster Daten in der Medizin war noch nie so hoch wie heute. Der technologische Fortschritt und die Automatisierung haben die traditionellen statistischen Methoden erweitert und die Analyse von Big Data ermöglicht. Dies hat die Entdeckung neuer Assoziationen mit einer Granularität ermöglicht, die dem Menschen zuvor verborgen war. Der erste Teil dieser Übersichtsarbeit bietet einen Überblick der grundlegenden Prinzipien und Techniken des maschinellen Lernens (ML), um deren Anwendung in den neuesten Veröffentlichungen über Herzrhythmusstörungen besser zu verstehen. Der zweite Teil schildert ML-gestützte Fortschritte bei der Erkennung und Diagnose von Erkrankungen, bei der Vorhersage von Ergebnissen und bei der neuartigen Charakterisierung von Erkrankungen im Zusammenhang mit Themen wie Elektrokardiographie, Vorhofflimmern, ventrikulären Arrhythmien und kardialen Geräten. Schließlich werden die Grenzen und Herausforderungen der Anwendung von ML in der klinischen Praxis diskutiert, beispielsweise in Bezug auf Validierung, Replikation, Verallgemeinerbarkeit und regulatorische Fragen. Weitere sorgfältig konzipierte Studien und Kooperationen sind erforderlich, damit ML umsetzbar, verlässlich, präzise und reproduzierbar wird und um ihr volles Potenzial für eine patientenorientierte Präzisionsmedizin ausschöpfen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Austin C, Kusumoto F (2016) The application of big data in medicine: current implications and future directions. J Interv Card Electrophysiol 47:51–59

    PubMed  Google Scholar 

  2. Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ (2015) Big data for health. IEEE J Biomed Health Inform 19:1193–1208

    PubMed  Google Scholar 

  3. Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP (2020) Recommendations for reporting machine learning analyses in clinical research. Circ Cardiovasc Qual Outcomes 13:e6556

    PubMed  PubMed Central  Google Scholar 

  4. Beam AL, Kohane IS (2018) Big data and machine learning in health care. JAMA 319:1317–1318

    PubMed  Google Scholar 

  5. Levy AE, Biswas M, Weber R, Tarakji K, Chung M, Noseworthy PA et al (2019) Applications of machine learning in decision analysis for dose management for dofetilide. PLoS ONE 14:e227324

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489

    CAS  PubMed  Google Scholar 

  7. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25:65–69

    CAS  PubMed  PubMed Central  Google Scholar 

  8. He R, Wang K, Zhao N, Liu Y, Yuan Y, Li Q et al (2018) Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks. Front Physiol 9:1206

    PubMed  PubMed Central  Google Scholar 

  9. Smith SW, Rapin J, Li J, Fleureau Y, Fennell W, Walsh BM et al (2019) A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation. Int J Cardiol Heart Vasc 25:100423

    PubMed  PubMed Central  Google Scholar 

  10. Huang D, Yamauchi K, Inden Y, Yang J, Jiang Z, Ida H et al (2005) Use of an artificial neural network to localize accessory pathways of Wolff-Parkinson-White syndrome with 12-lead electrocardiogram. Med Inform Internet Med 30:277–286

    PubMed  Google Scholar 

  11. Mjahad A, Rosado-Munoz A, Bataller-Mompean M, Frances-Villora JV, Guerrero-Martinez JF (2017) Ventricular fibrillation and tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning. Comput Methods Programs Biomed 141:119–127

    CAS  PubMed  Google Scholar 

  12. Zhou X, Zhu X, Nakamura K, Mahito N (2018) Premature ventricular contraction detection from ambulatory ECG using recurrent neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2018:2551–2554

    PubMed  Google Scholar 

  13. Asgari S, Mehrnia A, Moussavi M (2015) Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput Biol Med 60:132–142

    PubMed  Google Scholar 

  14. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ et al (2019) An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394:861–867

    PubMed  Google Scholar 

  15. Kashou AH, Rabinstein AA, Attia IZ, Asirvatham SJ, Gersh BJ, Friedman PA et al (2020) Recurrent cryptogenic stroke: a potential role for an artificial intelligence-enabled electrocardiogram? HeartRhythm Case Rep 6:202–205

    PubMed  PubMed Central  Google Scholar 

  16. Lee H, Shin SY, Seo M, Nam GB, Joo S (2016) Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci Rep 6:32390

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G et al (2019) Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 25:70–74

    CAS  PubMed  Google Scholar 

  18. Sengupta PP, Kulkarni H, Narula J (2018) Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol 71:1650–1660

    PubMed  Google Scholar 

  19. Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL et al (2020) Artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ Arrhythm Electrophysiol 13:e8437

    CAS  PubMed  Google Scholar 

  20. Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP et al (2019) Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 4:428–436

    PubMed  PubMed Central  Google Scholar 

  21. Porumb M, Stranges S, Pescape A, Pecchia L (2020) Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep 10:170

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Simjanoska M, Gjoreski M, Gams M, Madevska Bogdanova A (2018) Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors (Basel) 18(4):1160. https://doi.org/10.3390/s18041160

    Article  Google Scholar 

  23. Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G et al (2019) Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ Arrhythm Electrophysiol 12:e7284

    PubMed  PubMed Central  Google Scholar 

  24. Kalscheur MM, Kipp RT, Tattersall MC, Mei C, Buhr KA, DeMets DL et al (2018) Machine learning algorithm predicts cardiac resynchronization therapy outcomes: lessons from the COMPANION trial. Circ Arrhythm Electrophysiol 11:e5499

    PubMed  PubMed Central  Google Scholar 

  25. Tokodi M, Schwertner WR, Kovacs A, Toser Z, Staub L, Sarkany A et al (2020) Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J 41:1747–1756

    PubMed  PubMed Central  Google Scholar 

  26. Feeny AK, Rickard J, Patel D, Toro S, Trulock KM, Park CJ et al (2019) Machine learning prediction of response to cardiac resynchronization therapy: improvement versus current guidelines. Circ Arrhythm Electrophysiol 12:e7316

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C et al (2019) Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail 21:74–85

    PubMed  Google Scholar 

  28. Tiwari P, Colborn KL, Smith DE, Xing F, Ghosh D, Rosenberg MA (2020) Assessment of a machine learning model applied to harmonized electronic health record data for the prediction of incident atrial fibrillation. JAMA Netw Open 3:e1919396

    PubMed  PubMed Central  Google Scholar 

  29. Hill NR, Ayoubkhani D, McEwan P, Sugrue DM, Farooqui U, Lister S et al (2019) Predicting atrial fibrillation in primary care using machine learning. PLoS ONE 14:e224582

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan BP, Lai WHS, Chan CKY, Chan SC, Chan LH, Lam KM et al (2018) Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmographic signals. J Am Heart Assoc 7(8):e8585. https://doi.org/10.1161/JAHA.118.008585

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sanatkhani S, Nedios S, Menon PG, Bollmann A, Hindricks G, Shroff SG (2021) Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol 12:633135

    PubMed  PubMed Central  Google Scholar 

  32. Han L, Askari M, Altman RB, Schmitt SK, Fan J, Bentley JP et al (2019) Atrial fibrillation burden signature and near-term prediction of stroke: a machine learning analysis. Circ Cardiovasc Qual Outcomes 12:e5595

    PubMed  PubMed Central  Google Scholar 

  33. Inohara T, Shrader P, Pieper K, Blanco RG, Thomas L, Singer DE et al (2018) Association of of atrial fibrillation clinical phenotypes with treatment patterns and outcomes: a multicenter registry study. JAMA Cardiol 3:54–63

    PubMed  Google Scholar 

  34. Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R et al (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372:1812–1822

    PubMed  Google Scholar 

  35. Schilling C, Keller M, Scherr D, Oesterlein T, Haissaguerre M, Schmitt C et al (2015) Fuzzy decision tree to classify complex fractionated atrial electrograms. Biomed Tech (Berl) 60:245–255

    Google Scholar 

  36. Alhusseini MI, Abuzaid F, Rogers AJ, Zaman JAB, Baykaner T, Clopton P et al (2020) Machine learning to classify Intracardiac electrical patterns during atrial fibrillation: machine learning of atrial fibrillation. Circ Arrhythm Electrophysiol 13:e8160

    PubMed  PubMed Central  Google Scholar 

  37. Zolotarev AM, Hansen BJ, Ivanova EA, Helfrich KM, Li N, Janssen PML et al (2020) Optical mapping-validated machine learning improves atrial fibrillation driver detection by multi-electrode mapping. Circ Arrhythm Electrophysiol 13:e8249

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mesquita J, Ferreira AM, Cavaco D, Moscoso Costa F, Carmo P, Marques H et al (2018) Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure—ATLAS score. Europace 20:f428–f435

    PubMed  Google Scholar 

  39. Varela M, Bisbal F, Zacur E, Berruezo A, Aslanidi OV, Mont L et al (2017) Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation. Front Physiol 8:68

    PubMed  PubMed Central  Google Scholar 

  40. Nedios S, Sanatkhani S, Oladosu M, Seewoster T, Richter S, Arya A et al (2021) Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: a proof of concept study. Int J Cardiol Heart Vasc 33:100730

    PubMed  PubMed Central  Google Scholar 

  41. Nedios S, Lindemann F, Heijman J, Crijns H, Bollmann A, Hindricks G (2021) Atrial remodeling and atrial fibrillation recurrence after catheter ablation : past, present, and future developments. Herz 46:312–317

    PubMed  Google Scholar 

  42. Atta-Fosu T, LaBarbera M, Ghose S, Schoenhagen P, Saliba W, Tchou PJ et al (2021) A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. BMC Med Imaging 21:45

    PubMed  PubMed Central  Google Scholar 

  43. Firouznia M, Feeny AK, LaBarbera MA, McHale M, Cantlay C, Kalfas N et al (2021) Machine learning-derived fractal features of shape and texture of the left atrium and pulmonary veins from cardiac computed tomography scans are associated with risk of recurrence of atrial fibrillation postablation. Circ Arrhythm Electrophysiol 14:e9265

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nedios S, Koutalas E, Sommer P, Arya A, Rolf S, Husser D et al (2017) Asymmetrical left atrial remodelling in atrial fibrillation: relation with diastolic dysfunction and long-term ablation outcomes. Europace 19:1463–1469

    PubMed  Google Scholar 

  45. Shade JK, Ali RL, Basile D, Popescu D, Akhtar T, Marine JE et al (2020) Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation. Circ Arrhythm Electrophysiol 13:e8213

    PubMed  PubMed Central  Google Scholar 

  46. Shim J, Hwang M, Song JS, Lim B, Kim TH, Joung B et al (2017) Virtual in-Silico modeling guided catheter ablation predicts effective linear ablation lesion set for longstanding persistent atrial fibrillation: multicenter prospective randomized study. Front Physiol 8:792

    PubMed  PubMed Central  Google Scholar 

  47. Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH et al (2019) Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 3:870–879

    PubMed  PubMed Central  Google Scholar 

  48. Aronis KN, Ali RL, Liang JA, Zhou S, Trayanova NA (2019) Understanding AF mechanisms through computational modelling and simulations. Arrhythm Electrophysiol Rev 8:210–219

    PubMed  PubMed Central  Google Scholar 

  49. Dagres N, Peek N, Leclercq C, Hindricks G (2020) The PROFID project. Eur Heart J 41:3781–3782

    PubMed  PubMed Central  Google Scholar 

  50. Okada DR, Miller J, Chrispin J, Prakosa A, Trayanova N, Jones S et al (2020) Substrate spatial complexity analysis for the prediction of ventricular arrhythmias in patients with ischemic cardiomyopathy. Circ Arrhythm Electrophysiol 13:e7975

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Alis D, Guler A, Yergin M, Asmakutlu O (2020) Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI. Diagn Interv Imaging 101:137–146

    CAS  PubMed  Google Scholar 

  52. Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F et al (2021) Machine learned cellular phenotypes in cardiomyopathy predict sudden death. Circ Res 128:172–184

    CAS  PubMed  Google Scholar 

  53. Marzec L, Raghavan S, Banaei-Kashani F, Creasy S, Melanson EL, Lange L et al (2018) Device-measured physical activity data for classification of patients with ventricular arrhythmia events: a pilot investigation. PLoS ONE 13:e206153

    PubMed  PubMed Central  Google Scholar 

  54. Yokokawa M, Liu TY, Yoshida K, Scott C, Hero A, Good E et al (2012) Automated analysis of the 12-lead electrocardiogram to identify the exit site of postinfarction ventricular tachycardia. Heart Rhythm 9:330–334

    PubMed  Google Scholar 

  55. Sapp JL, Bar-Tal M, Howes AJ, Toma JE, El-Damaty A, Warren JW et al (2017) Real-time localization of ventricular tachycardia origin from the 12-lead electrocardiogram. JACC Clin Electrophysiol 3:687–699

    PubMed  Google Scholar 

  56. Zhou S, AbdelWahab A, Horacek BM, MacInnis PJ, Warren JW, Davis JS et al (2020) Prospective assessment of an automated Intraprocedural 12-lead ECG-based system for localization of early left ventricular activation. Circ Arrhythm Electrophysiol 13:e8262

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gyawali PK, Horacek BM, Sapp JL, Wang L (2020) Sequential factorized autoencoder for localizing the origin of ventricular activation from 12-lead electrocardiograms. IEEE Trans Biomed Eng 67:1505–1516

    PubMed  Google Scholar 

  58. Yang T, Yu L, Jin Q, Wu L, He B (2018) Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ECG. IEEE Trans Biomed Eng 65:1662–1671

    PubMed  Google Scholar 

  59. Bogossian H, Panteloglou D, Karosiene Z, Macher-Heidrich S, Adomeit HJ, Lemke B et al (2021) Perioprocedural mortality after ICD implantation. Herz 46:581–588

    PubMed  PubMed Central  Google Scholar 

  60. Markewitz A (2021) Bundesfachgruppe Herzschrittmacher und D. [annual report 2019 of the German pacemaker and defibrillator registry-part 1: cardiac pacemakers : working group on cardiac pacemakers and cardioverter-defibrillators at IQTIG-institute for quality assurance and transparency in healthcare]. Herzschrittmacherther Elektrophysiol 32:510–523

    CAS  PubMed  Google Scholar 

  61. Nowak B, Misselwitz B, Przibille O, Mehta RH (2017) Is mortality a useful parameter for public reporting in pacemaker implantation? Results of an obligatory external quality control programme. Europace 19:568–572

    PubMed  Google Scholar 

  62. Dewland TA, Pellegrini CN, Wang Y, Marcus GM, Keung E, Varosy PD (2011) Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry. J Am Coll Cardiol 58:1007–1013

    PubMed  Google Scholar 

  63. Bogossian H, Frommeyer G, Hochadel M, Ince H, Spitzer SG, Eckardt L et al (2020) Single chamber implantable cardioverter defibrillator compared to dual chamber implantable cardioverter defibrillator: less is more! Data from the German device registry. Clin Res Cardiol 109:911–917

    PubMed  Google Scholar 

  64. Shakibfar S, Krause O, Lund-Andersen C, Aranda A, Moll J, Andersen TO et al (2019) Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning. Europace 21:268–274

    PubMed  Google Scholar 

  65. Sanroman-Junquera M, Mora-Jimenez I, Almendral J, Garcia-Alberola A, Rojo-Alvarez JL (2015) Automatic supporting system for regionalization of ventricular tachycardia exit site in implantable defibrillators. PLoS ONE 10:e124514

    PubMed  PubMed Central  Google Scholar 

  66. Wegner FK, Kochhauser S, Ellermann C, Lange PS, Frommeyer G, Leitz P et al (2020) Prospective blinded evaluation of the smartphone-based AliveCor Kardia ECG monitor for atrial fibrillation detection: the PEAK-AF study. Eur J Intern Med 73:72–75

    PubMed  Google Scholar 

  67. van de Leur RR, Boonstra MJ, Bagheri A, Roudijk RW, Sammani A, Taha K et al (2020) Big data and artificial intelligence: opportunities and threats in electrophysiology. Arrhythm Electrophysiol Rev 9:146–154

    PubMed  PubMed Central  Google Scholar 

  68. Howard JP, Fisher L, Shun-Shin MJ, Keene D, Arnold AD, Ahmad Y et al (2019) Cardiac rhythm device identification using neural networks. JACC Clin Electrophysiol 5:576–586

    PubMed  PubMed Central  Google Scholar 

  69. Hindricks G, Elsner C, Piorkowski C, Taborsky M, Geller JC, Schumacher B et al (2014) Quarterly vs. yearly clinical follow-up of remotely monitored recipients of prophylactic implantable cardioverter-defibrillators: results of the REFORM trial. Eur Heart J 35:98–105

    PubMed  Google Scholar 

  70. Hindricks G, Varma N, Kacet S, Lewalter T, Sogaard P, Guedon-Moreau L et al (2017) Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J 38:1749–1755

    PubMed  PubMed Central  Google Scholar 

  71. Rosier A, Mabo P, Temal L, van Hille P, Dameron O, Deleger L et al (2016) Personalized and automated remote monitoring of atrial fibrillation. Europace 18:347–352

    PubMed  Google Scholar 

  72. Varma N, Cygankiewicz I, Turakhia MP, Heidbuchel H, Hu YF, Chen LY et al (2021) 2021 ISHNE/HRS/EHRA/APHRS expert collaborative statement on mhealth in arrhythmia management: digital medical tools for heart rhythm professionals: from the international society for Holter and noninvasive electrocardiology/heart rhythm society/European heart rhythm association/Asia-pacific heart rhythm society. Circ Arrhythm Electrophysiol 14:e9204

    PubMed  PubMed Central  Google Scholar 

  73. Loring Z, Mehrotra S, Piccini JP (2019) Machine learning in ‘big data’: handle with care. Europace 21:1284–1285

    PubMed  PubMed Central  Google Scholar 

  74. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 15:e1002683

    PubMed  PubMed Central  Google Scholar 

  75. Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019) Dissecting racial bias in an algorithm used to manage the health of populations. Science 366:447–453

    CAS  PubMed  Google Scholar 

  76. Parikh RB, Teeple S, Navathe AS (2019) Addressing bias in artificial intelligence in health care. JAMA 322:2377–2378

    PubMed  Google Scholar 

  77. Hosny A, Aerts H (2019) Artificial intelligence for global health. Science 366:955–956

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M (2021) Ethical machine learning in healthcare. Annu Rev Biomed Data Sci 4:123–144

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Nedios MD, PhD.

Ethics declarations

Conflict of interest

S. Nedios, K. Iliodromitis, C. Kowalewski, A. Bollmann, G. Hindricks, N. Dagres, and H. Bogossian declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

The original online version of this article was revised: The author name Christopher Kowalewski was incorrectly written as Christopher Kowaleski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedios, S., Iliodromitis, K., Kowalewski, C. et al. Big Data in electrophysiology. Herzschr Elektrophys 33, 26–33 (2022). https://doi.org/10.1007/s00399-022-00837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-022-00837-z

Keywords

Schlüsselwörter

Navigation