Skip to main content

Leitfaden zur sicheren und effizienten Kryoballon-Vorhofflimmerablation

Praktisches Vorgehen, Tipps und Tricks

Practical guide for safe and efficient cryoballoon ablation for atrial fibrillation

Practical procedure, tips and tricks

Zusammenfassung

Die kryoballonbasierte Vorhofflimmerablation wird neben der Hochfrequenzstromablation in den aktuellen Leitlinien zur Vorhofflimmertherapie empfohlen und hat sich in der klinischen Routine vieler Zentren für die Index-Pulmonalvenenisolation als ein Standardverfahren etabliert. Durch ein systematisches Vorgehen kann eine sichere, vereinfachte und oftmals dauerhafte Pulmonalvenenisolation erreicht werden. Dieser Übersichtartikel bietet einen praktischen Leitfaden für alle Arbeitsschritte einer kryoballonbasierten Pulmonalvenenisolation und geht dabei auch auf die präprozedurale Vorbereitung sowie die postinterventionelle Nachsorge ein. Berücksichtigt werden beide aktuell auf dem Markt verfügbaren Kryoballonsysteme.

Abstract

In the current guidelines on treatment of atrial fibrillation, cryoballoon-based catheter ablation of atrial fibrillation is recommended in addition to radiofrequency ablation and has become established as a standard procedure in the clinical routine of many centers for index pulmonary vein isolation. A safe, simplified and often durable pulmonary vein isolation can be achieved by a systematic approach. This review article provides a practical guide for all steps of cryoballoon-based pulmonary vein isolation, including preprocedural preparation and postinterventional follow-up. Both cryoballoon systems currently available on the market are considered.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. 1.

    Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C et al (2021) 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498

    PubMed  Google Scholar 

  2. 2.

    Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R et al (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372(19):1812–1822

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kuck KH, Hoffmann BA, Ernst S, Wegscheider K, Treszl A, Metzner A et al (2016) Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the gap-atrial fibrillation-German atrial fibrillation competence network 1 trial. Circ Arrhythm Electrophysiol 9(1):e3337

    PubMed  Google Scholar 

  4. 4.

    Kuck KH, Brugada J, Furnkranz A, Metzner A, Ouyang F, Chun KR et al (2016) Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med 374(23):2235–2245

    PubMed  Google Scholar 

  5. 5.

    Hoffmann E, Straube F, Wegscheider K, Kuniss M, Andresen D, Wu LQ et al (2019) Outcomes of cryoballoon or radiofrequency ablation in symptomatic paroxysmal or persistent atrial fibrillation. Europace 21(9):1313–1324

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Reddy VY, Sediva L, Petru J, Skoda J, Chovanec M, Chitovova Z et al (2015) Durability of pulmonary vein isolation with cryoballoon ablation: results from the sustained PV isolation with arctic front advance (SUPIR) study. J Cardiovasc Electrophysiol 26(5):493–500

    PubMed  Google Scholar 

  7. 7.

    Aryana A, Singh SM, Mugnai G, de Asmundis C, Kowalski M, Pujara DK et al (2016) Pulmonary vein reconnection following catheter ablation of atrial fibrillation using the second-generation cryoballoon versus open-irrigated radiofrequency: results of a multicenter analysis. J Interv Card Electrophysiol 47(3):341–348

    PubMed  Google Scholar 

  8. 8.

    Providencia R, Defaye P, Lambiase PD, Pavin D, Cebron JP, Halimi F et al (2017) Results from a multicentre comparison of cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: is cryoablation more reproducible? Europace 19(1):48–57

    PubMed  Google Scholar 

  9. 9.

    Andrade JG, Wells GA, Deyell MW, Bennett M, Essebag V, Champagne J et al (2021) Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med 384(4):305–315

    CAS  Google Scholar 

  10. 10.

    Wazni OM, Dandamudi G, Sood N, Hoyt R, Tyler J, Durrani S et al (2021) Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med 384(4):316–324

    CAS  PubMed  Google Scholar 

  11. 11.

    Kuniss M, Pavlovic N, Velagic V, Hermida JS, Healey S, Arena G et al (2021) Cryoballoon ablation vs. antiarrhythmic drugs: first-line therapy for patients with paroxysmal atrial fibrillation. Europace. 23(7):1033–1041. https://doi.org/10.1093/europace/euab029

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A et al (2020) Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med 383(14):1305–1316

    PubMed  Google Scholar 

  13. 13.

    Kuck KH, Lebedev DS, Mikhaylov EN, Romanov A, Gellér L, Kalējs O et al (2021) Catheter ablation or medical therapy to delay progression of atrial fibrillation: the randomized controlled atrial fibrillation progression trial (ATTEST). Europace 23(3):362–369

    PubMed  Google Scholar 

  14. 14.

    Kenigsberg DN, Martin N, Lim HW, Kowalski M, Ellenbogen KA (2015) Quantification of the cryoablation zone demarcated by pre- and postprocedural electroanatomic mapping in patients with atrial fibrillation using the 28-mm second-generation cryoballoon. Heart Rhythm 12(2):283–290

    PubMed  Google Scholar 

  15. 15.

    Tilz R, Chun J, Deneke T, Kelm M, Piorkowski C, Sommer P et al (2017) Positionspapier der Deutschen Gesellschaft für Kardiologie zur Kardioanalgosedierung – Fokus auf Eingriffe in der Rhythmologie. Kardiologe 11:369–382

    Google Scholar 

  16. 16.

    Sticherling C, Marin F, Birnie D, Boriani G, Calkins H, Dan GA et al (2015) Antithrombotic management in patients undergoing electrophysiological procedures: a European Heart Rhythm Association (EHRA) position document endorsed by the ESC Working Group Thrombosis, Heart Rhythm Society (HRS), and Asia Pacific Heart Rhythm Society (APHRS). Europace 17(8):1197–1214

    PubMed  Google Scholar 

  17. 17.

    Calkins H, Willems S, Gerstenfeld EP, Verma A, Schilling R, Hohnloser SH et al (2017) Uninterrupted dabigatran versus warfarin for ablation in atrial fibrillation. N Engl J Med 376(17):1627–1636

    CAS  PubMed  Google Scholar 

  18. 18.

    Steffel J, Collins R, Antz M, Cornu P, Desteghe L, Haeusler KG et al (2021) 2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace. 23(10):1612–1676. https://doi.org/10.1093/europace/euab065

    Article  PubMed  Google Scholar 

  19. 19.

    Duncker D, Sommer P, Busch S, Tilz RR, Althoff T, Iden L et al (2021) Puncture techniques in invasive cardiac electrophysiology. Herzschrittmacherther Elektrophysiol 32(2):274–284

    PubMed  Google Scholar 

  20. 20.

    Chun KR, Schmidt B, Metzner A, Tilz R, Zerm T, Köster I et al (2009) The ‘single big cryoballoon’ technique for acute pulmonary vein isolation in patients with paroxysmal atrial fibrillation: a prospective observational single centre study. Eur Heart J 30(6):699–709

    PubMed  Google Scholar 

  21. 21.

    Takami M, Lehmann HI, Misiri J, Parker KD, Sarmiento RI, Johnson SB et al (2015) Impact of freezing time and balloon size on the thermodynamics and isolation efficacy during pulmonary vein isolation using the second generation cryoballoon. Circ Arrhythm Electrophysiol 8(4):836–845

    PubMed  Google Scholar 

  22. 22.

    Chun KR, Stich M, Fürnkranz A, Bordignon S, Perrotta L, Dugo D et al (2017) Individualized cryoballoon energy pulmonary vein isolation guided by real-time pulmonary vein recordings, the randomized ICE‑T trial. Heart Rhythm 14(4):495–500

    PubMed  Google Scholar 

  23. 23.

    Wissner E, Heeger CH, Grahn H, Reissmann B, Wohlmuth P, Lemes C et al (2015) One-year clinical success of a ‘no-bonus’ freeze protocol using the second-generation 28 mm cryoballoon for pulmonary vein isolation. Europace 17(8):1236–1240

    PubMed  Google Scholar 

  24. 24.

    Aryana A, Kenigsberg DN, Kowalski M, Koo CH, Lim HW, O’Neill PG et al (2017) Verification of a novel atrial fibrillation cryoablation dosing algorithm guided by time-to-pulmonary vein isolation: results from the Cryo-DOSING Study (Cryoballoon-ablation DOSING Based on the Assessment of Time-to-Effect and Pulmonary Vein Isolation Guidance). Heart Rhythm 14(9):1319–1325

    PubMed  Google Scholar 

  25. 25.

    Bordignon S, Chen S, Bologna F, Thohoku S, Urbanek L, Willems F et al (2021) Optimizing cryoballoon pulmonary vein isolation: lessons from > 1000 procedures—the Frankfurt approach. Europace 23(6):868–877

    PubMed  Google Scholar 

  26. 26.

    Andrade JG, Champagne J, Dubuc M, Deyell MW, Verma A, Macle L et al (2019) Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation 140(22):1779–1788

    PubMed  Google Scholar 

  27. 27.

    Ferrero-de-Loma-Osorio Á, García-Fernández A, Castillo-Castillo J, Izquierdo-de-Francisco M, Ibáñez-Críado A, Moreno-Arribas J et al (2017) Time-to-effect-based dosing strategy for cryoballoon ablation in patients with paroxysmal atrial fibrillation: results of the plusONE multicenter randomized controlled noninferiority trial. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.117.005318

    Article  PubMed  Google Scholar 

  28. 28.

    Reissmann B, Wissner E, Deiss S, Heeger C, Schlueter M, Wohlmuth P et al (2017) First insights into cryoballoon-based pulmonary vein isolation taking the individual time-to-isolation into account. Europace 19(10):1676–1680

    PubMed  Google Scholar 

  29. 29.

    Heeger CH, Rexha E, Maack S, Rottner L, Fink T, Mathew S et al (2020) Reconduction after second-generation cryoballoon-based pulmonary vein isolation—impact of different ablation strategies. Circ J 84(6):902–910

    CAS  PubMed  Google Scholar 

  30. 30.

    Chen S, Schmidt B, Bordignon S, Perrotta L, Bologna F, Chun KRJ (2019) Impact of cryoballoon freeze duration on long-term durability of pulmonary vein isolation: ICE re-map study. JACC Clin Electrophysiol 5(5):551–559

    PubMed  Google Scholar 

  31. 31.

    Aryana A, Mugnai G, Singh SM, Pujara DK, de Asmundis C, Singh SK et al (2016) Procedural and biophysical indicators of durable pulmonary vein isolation during cryoballoon ablation of atrial fibrillation. Heart Rhythm 13(2):424–432

    PubMed  Google Scholar 

  32. 32.

    Metzner A, Reissmann B, Rausch P, Mathew S, Wohlmuth P, Tilz R et al (2014) One-year clinical outcome after pulmonary vein isolation using the second-generation 28-mm cryoballoon. Circ Arrhythm Electrophysiol 7(2):288–292

    PubMed  Google Scholar 

  33. 33.

    Metzner A, Heeger CH, Wohlmuth P, Reissmann B, Rillig A, Tilz RR et al (2015) Two-year outcome after pulmonary vein isolation using the second-generation 28-mm cryoballoon: lessons from the bonus freeze protocol. Clin Res Cardiol 105(1):72–8. https://doi.org/10.1007/s00392-015-0890-8

    Article  PubMed  Google Scholar 

  34. 34.

    Ghosh J, Martin A, Keech AC, Chan KH, Gomes S, Singarayar S et al (2013) Balloon warming time is the strongest predictor of late pulmonary vein electrical reconnection following cryoballoon ablation for atrial fibrillation. Heart Rhythm 10(9):1311–1317

    PubMed  Google Scholar 

  35. 35.

    Tilz RR, Meyer-Saraei R, Eitel C, Fink T, Sciacca V, Lopez LD et al (2021) Novel cryoballoon ablation system for single shot pulmonary vein isolation—the prospective ICE-AGE‑X study. Circ J 85(8):1296–1304

    PubMed  Google Scholar 

  36. 36.

    Chun KRJ, Perrotta L, Bordignon S, Khalil J, Dugo D, Konstantinou A et al (2017) Complications in catheter ablation of atrial fibrillation in 3,000 consecutive procedures: balloon versus radiofrequency current ablation. JACC Clin Electrophysiol 3(2):154–161

    PubMed  Google Scholar 

  37. 37.

    Ghosh J, Singarayar S, Kabunga P, McGuire MA (2015) Subclavian vein pacing and venous pressure waveform measurement for phrenic nerve monitoring during cryoballoon ablation of atrial fibrillation. Europace 17(6):884–890

    PubMed  Google Scholar 

  38. 38.

    Franceschi F, Dubuc M, Guerra PG, Delisle S, Romeo P, Landry E et al (2011) Diaphragmatic electromyography during cryoballoon ablation: a novel concept in the prevention of phrenic nerve palsy. Heart Rhythm 8(6):885–891

    PubMed  Google Scholar 

  39. 39.

    Okishige K, Aoyagi H, Shigeta T, Nakamura RA, Nishimura T, Yamauchi Y et al (2018) Quick, safe, and effective maneuver to prevent phrenic nerve injury during cryoballoon ablation of atrial fibrillation. J Interv Card Electrophysiol 53(2):233–238

    PubMed  Google Scholar 

  40. 40.

    Ghosh J, Sepahpour A, Chan KH, Singarayar S, McGuire MA (2013) Immediate balloon deflation for prevention of persistent phrenic nerve palsy during pulmonary vein isolation by balloon cryoablation. Heart Rhythm 10(5):646–652

    PubMed  Google Scholar 

  41. 41.

    Schoene K, Arya A, Grashoff F, Knopp H, Weber A, Lerche M et al (2020) Oesophageal Probe Evaluation in Radiofrequency Ablation of Atrial Fibrillation (OPERA): results from a prospective randomized trial. Europace 22(10):1487–1494

    PubMed  Google Scholar 

  42. 42.

    Furnkranz A, Bordignon S, Bohmig M, Konstantinou A, Dugo D, Perrotta L et al (2015) Reduced incidence of esophageal lesions by luminal esophageal temperature-guided second-generation cryoballoon ablation. Heart Rhythm 12(2):268–274

    PubMed  Google Scholar 

  43. 43.

    Metzner A, Burchard A, Wohlmuth P, Rausch P, Bardyszewski A, Gienapp C et al (2013) Increased incidence of esophageal thermal lesions using the second-generation 28-mm cryoballoon. Circ Arrhythm Electrophysiol 6(4):769–775

    PubMed  Google Scholar 

  44. 44.

    Luik A, Radzewitz A, Kieser M, Walter M, Bramlage P, Hormann P et al (2015) Cryoballoon versus open irrigated radiofrequency ablation in patients with paroxysmal atrial fibrillation: the prospective, randomized, controlled, noninferiority FreezeAF study. Circulation 132(14):1311–1319

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Aytemir K, Canpolat U, Yorgun H, Evranos B, Kaya EB, Şahiner ML et al (2016) Usefulness of ‘figure-of-eight’ suture to achieve haemostasis after removal of 15-French calibre femoral venous sheath in patients undergoing cryoablation. Europace 18(10):1545–1550

    PubMed  Google Scholar 

  46. 46.

    Kumar V, Wish M, Venkataraman G, Bliden K, Jindal M, Strickberger A (2019) A randomized comparison of manual pressure versus figure-of-eight suture for hemostasis after cryoballoon ablation for atrial fibrillation. J Cardiovasc Electrophysiol 30(12):2806–2810

    PubMed  Google Scholar 

  47. 47.

    Fink T, Sciacca V, Feickert S, Metzner A, Lin T, Schlüter M et al (2020) Outcome of cardiac tamponades in interventional electrophysiology. Europace 22(8):1240–1251

    PubMed  Google Scholar 

  48. 48.

    Kuck KH, Böcker D, Chun J, Deneke T, Hindricks G, Hoffmann E et al (2017) Qualitätskriterien zur Durchführung der Katheterablation von Vorhofflimmern – Positionspapier der Deutschen Gesellschaft für Kardiologie. Kardiologe 11:161–182

    Google Scholar 

  49. 49.

    Kim YG, Boo KY, Choi JI, Choi YY, Choi HY, Roh SY et al (2021) Early recurrence is reliable predictor of late recurrence after radiofrequency catheter ablation of atrial fibrillation. JACC Clin Electrophysiol 7(3):343–351

    PubMed  Google Scholar 

  50. 50.

    Kuck KH, Albenque JP, Chun KJ, Fürnkranz A, Busch M, Elvan A et al (2019) Repeat ablation for atrial fibrillation recurrence post cryoballoon or radiofrequency ablation in the FIRE AND ICE trial. Circ Arrhythm Electrophysiol 12(6):e7247

    CAS  PubMed  Google Scholar 

  51. 51.

    Westra SW, van Vugt SPG, Sezer S, Evertz R, Hemels ME, Beukema RJ et al (2019) Second-generation cryoballoon ablation for recurrent atrial fibrillation after an index cryoballoon procedure: a staged strategy with variable balloon size. J Interv Card Electrophysiol 54(1):17–24

    PubMed  Google Scholar 

  52. 52.

    Pokushalov E, Romanov A, Artyomenko S, Baranova V, Losik D, Bairamova S et al (2013) Cryoballoon versus radiofrequency for pulmonary vein re-isolation after a failed initial ablation procedure in patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 24(3):274–279

    PubMed  Google Scholar 

  53. 53.

    Di Biase L, Burkhardt JD, Mohanty P, Mohanty S, Sanchez JE, Trivedi C et al (2016) Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF trial. J Am Coll Cardiol 68(18):1929–1940

    PubMed  Google Scholar 

  54. 54.

    Gonna H, Domenichini G, Conti S, Gomes J, Raju H, Gallagher MM (2016) Cryoballoon isolation of the superior Vena Cava. JACC Clin Electrophysiol 2(4):529–531

    PubMed  Google Scholar 

  55. 55.

    Aryana A, Baker JH, Espinosa Ginic MA, Pujara DK, Bowers MR, O’Neill PG et al (2018) Posterior wall isolation using the cryoballoon in conjunction with pulmonary vein ablation is superior to pulmonary vein isolation alone in patients with persistent atrial fibrillation: A multicenter experience. Heart Rhythm 15(8):1121–1129

    PubMed  Google Scholar 

  56. 56.

    Bordignon S, Chen S, Perrotta L, Bologna F, Nagase T, Konstantinou A et al (2019) Durability of cryoballoon left atrial appendage isolation: acute and invasive remapping electrophysiological findings. Pacing Clin Electrophysiol 42(6):646–654

    PubMed  Google Scholar 

  57. 57.

    Yorgun H, Canpolat U, Okşul M, Şener YZ, Ateş AH, Crijns H et al (2019) Long-term outcomes of cryoballoon-based left atrial appendage isolation in addition to pulmonary vein isolation in persistent atrial fibrillation. Europace 21(11):1653–1662

    PubMed  Google Scholar 

  58. 58.

    Santoro F, Rillig A, Sohns C, Pott A, Brunetti ND, Reissmann B et al (2019) Second-generation cryoballoon atrial fibrillation ablation in patients with persistent left superior caval vein. JACC Clin Electrophysiol 5(5):590–598

    PubMed  Google Scholar 

  59. 59.

    Kuniss M, Greiß H, Pajitnev D, Akkaya E, Deubner N, Hain A et al (2017) Cryoballoon ablation of persistent atrial fibrillation: feasibility and safety of left atrial roof ablation with generation of conduction block in addition to antral pulmonary vein isolation. Europace 19(7):1109–1115

    PubMed  Google Scholar 

  60. 60.

    Maurer T, Mathew S, Schlüter M, Lemes C, Riedl J, Inaba O et al (2019) High-resolution imaging of LA anatomy using a novel wide-band dielectric mapping system: first clinical experience. JACC Clin Electrophysiol 5(11):1344–1354

    PubMed  Google Scholar 

  61. 61.

    Rillig A, Rottner L, Nodorp M, Lin T, Weimann J, Münkler P et al (2020) Novel wide-band dielectric imaging system and occlusion tool to guide cryoballoon-based pulmonary vein isolation: feasibility and first insights. Circ Arrhythm Electrophysiol 13(12):e9219

    PubMed  Google Scholar 

  62. 62.

    Rottner L, Fink T, Heeger CH, Schlüter M, Goldmann B, Lemes C et al (2018) Is less more? Impact of different ablation protocols on periprocedural complications in second-generation cryoballoon based pulmonary vein isolation. Europace 20(9):1459–1467

    PubMed  Google Scholar 

  63. 63.

    Casado-Arroyo R, Chierchia GB, Conte G, Levinstein M, Sieira J, Rodriguez-Manero M et al (2013) Phrenic nerve paralysis during cryoballoon ablation for atrial fibrillation: a comparison between the first- and second-generation balloon. Heart Rhythm 10(9):1318–1324

    PubMed  Google Scholar 

  64. 64.

    Metzner A, Rausch P, Lemes C, Reissmann B, Bardyszewski A, Tilz R et al (2014) The incidence of phrenic nerve injury during pulmonary vein isolation using the second-generation 28 mm cryoballoon. J Cardiovasc Electrophysiol 25(5):466–470

    PubMed  Google Scholar 

  65. 65.

    Abugattas JP, de Asmundis C, Iacopino S, Salghetti F, Takarada K, Coutiño HE et al (2018) Phrenic nerve injury during right inferior pulmonary vein ablation with the second-generation cryoballoon: clinical, procedural, and anatomical characteristics. Europace 20(10):e156–e63

    PubMed  Google Scholar 

  66. 66.

    Tohoku S, Chen S, Last J, Bordignon S, Bologna F, Trolese L et al (2020) Phrenic nerve injury in atrial fibrillation ablation using balloon catheters: Incidence, characteristics, and clinical recovery course. J Cardiovasc Electrophysiol 31(8):1932–1941. https://doi.org/10.1111/jce.14567

    Article  PubMed  Google Scholar 

  67. 67.

    Mugnai G, de Asmundis C, Velagic V, Hünük B, Ströker E, Wauters K et al (2016) Phrenic nerve injury during ablation with the second-generation cryoballoon: analysis of the temperature drop behaviour in a large cohort of patients. Europace 18(5):702–709

    PubMed  Google Scholar 

  68. 68.

    Furnkranz A, Bordignon S, Schmidt B, Bohmig M, Bohmer MC, Bode F et al (2013) Luminal esophageal temperature predicts esophageal lesions after second-generation cryoballoon pulmonary vein isolation. Heart Rhythm 10(6):789–793

    PubMed  Google Scholar 

  69. 69.

    Cordes F, Ellermann C, Dechering DG, Frommeyer G, Kochhäuser S, Lange PS et al (2019) Time-to-isolation-guided cryoballoon ablation reduces oesophageal and mediastinal alterations detected by endoscopic ultrasound: results of the MADE-PVI trial. Europace 21(9):1325–1333

    PubMed  Google Scholar 

  70. 70.

    Sarairah SY, Woodbury B, Methachittiphan N, Tregoning DM, Sridhar AR, Akoum N (2020) Esophageal thermal injury following cryoballoon ablation for atrial fibrillation. JACC Clin Electrophysiol 6(3):262–268

    PubMed  Google Scholar 

  71. 71.

    Piccini JP, Braegelmann KM, Simma S, Koneru JN, Ellenbogen KA (2020) Risk of atrioesophageal fistula with cryoballoon ablation of atrial fibrillation. Heart Rhythm 1(3):173–179

    Google Scholar 

  72. 72.

    John RM, Kapur S, Ellenbogen KA, Koneru JN (2017) Atrioesophageal fistula formation with cryoballoon ablation is most commonly related to the left inferior pulmonary vein. Heart Rhythm 14(2):184–189

    PubMed  Google Scholar 

  73. 73.

    Chun KRJ, Okumura K, Scazzuso F, Keun On Y, Kueffer FJ, Braegelmann KM et al (2021) Safety and efficacy of cryoballoon ablation for the treatment of paroxysmal and persistent AF in a real-world global setting: results from the Cryo AF Global Registry. J Arrhythmia 37(2):356–367

    Google Scholar 

  74. 74.

    Santoro F, Brunetti ND, Rillig A, Reissmann B, Lemeš C, Maurer T et al (2021) Stroke and left atrial thrombi after cryoballoon ablation of atrial fibrillation: incidence and predictors. Results from a long-term follow-up. J Thromb Thrombolysis 51(1):74–80

    CAS  PubMed  Google Scholar 

  75. 75.

    Tokutake K, Tokuda M, Yamashita S, Sato H, Ikewaki H, Okajima E et al (2019) Anatomical and procedural factors of severe pulmonary vein stenosis after cryoballoon pulmonary vein ablation. JACC Clin Electrophysiol 5(11):1303–1315

    PubMed  Google Scholar 

  76. 76.

    Nagase T, Bordignon S, Perrotta L, Bologna F, Weise FK, Konstantinou A et al (2018) Low risk of pulmonary vein stenosis after contemporary atrial fibrillation ablation—lessons from repeat procedures after radiofrequency current, cryoballoon, and laser balloon. Circ J 82(6):1558–1565

    CAS  PubMed  Google Scholar 

  77. 77.

    Miyazaki S, Kajiyama T, Hada M, Nakamura H, Hachiya H, Tada H et al (2018) Does second-generation cryoballoon ablation using the current single short freeze strategy produce pulmonary vein stenosis? Int J Cardiol 272:175–178

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julian Chun.

Ethics declarations

Interessenkonflikt

J. Chun, T. Maurer, A. Rillig, S. Bordignon, L. Iden, S. Busch, D. Steven, R.R. Tilz, D.-I. Shin, H. Estner, F. Bourier, D. Duncker, P. Sommer, N.-C. Ewertsen, H. Jansen, V. Johnson, L. Bertagnolli, T. Althoff und A. Metzner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figureqr

QR-Code scannen & Beitrag online lesen

Supplementary Information

Leitfaden zur sicheren Intubation der inferioren Pulmonalvenen.

Darstellung zur Anlage einer Z Naht am Ende der Kryoballon Vorhofflimmer-Ablation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chun, J., Maurer, T., Rillig, A. et al. Leitfaden zur sicheren und effizienten Kryoballon-Vorhofflimmerablation. Herzschr Elektrophys 32, 550–562 (2021). https://doi.org/10.1007/s00399-021-00820-0

Download citation

Schlüsselwörter

  • Katheterablation
  • Praktischer Leitfaden
  • Zeitdauer bis zur Pulmonalvenen Isolation
  • Cryoballon Manöver
  • Optimierter Arbeitsablauf

Keywords

  • Catheter ablation
  • Practical guide
  • Time to Pulmonary vein isolation
  • Cryoballoon maneuvers
  • Optimized workflow