Mapping strategies for premature ventricular contractions—activation, voltage, and/or pace map

Mapping-Strategien bei ventrikulären Extrasystolen – Activation- Voltage- und/oder Pace-Map


A high premature ventricular contraction (PVC) burden is associated with an increase in cardiovascular mortality and may become clinically apparent through palpitations, reduced physical capacity or PVC-induced cardiomyopathy. Catheter ablation has been shown to be a more effective tool to treat patients with a high PVC burden than medical therapy alone. Current recommendations list catheter ablation as a class I option in patients with symptomatic idiopathic outflow tract PVCs as well as in patients with suspected PVC-induced cardiomyopathy. Careful planning is necessary to maximize efficiency and outcome of the ablation procedure. Prediction of the most likely PVC origin by studying the 12-lead electrocardiogram (ECG) is important. A high burden of spontaneous PVCs is associated with a better outcome during and after the procedure; pharmacological provocation can be performed. Developments in high density mapping systems have greatly advanced accuracy and efficiency of arrhythmia mapping in recent years. Different systems are now available that allow the simultaneous use and integration of different mapping information in an automated manner. Voltage mapping, activation mapping and pace mapping are used in clinical practice today. Activation mapping is used to visualize the area of earliest activation. While it is a very accurate tool, it relies on a high burden of spontaneous PVCs. Pace mapping aims to find the target area by means of stimulation and comparison of paced QRS complexes with the clinical PVC. Today, mostly a combination of both methods is used to maximize procedure outcome and efficiency. While voltage mapping plays a primary role in the mapping of substrate-based sustained arrhythmias in patients with underlying structural heart disease, activation and pace mapping are the methods of choice for PVC mapping.


Eine hohe Anzahl ventrikulärer Extrasystolen (VES) ist mit einer erhöhten kardiovaskulären Mortalität assoziiert und kann klinisch mit Palpitationen, reduzierter körperlicher Leistungsfähigkeit oder VES-assoziierter Kardiomyopathie imponieren. Dabei ist die Katheterablation ein wirksameres Behandlungsverfahren als die alleinige medikamentöse Therapie. Aktuell hat die Katheterablation bei Patienten mit symptomatischen, idiopathischen Ausflusstrakt-VES oder mit vermuteter VES-assoziierter Kardiomyopathie eine Klasse-I-Empfehlung. Vor einer VES-Ablation ist eine sorgfältige Planung notwendig, um Wirksamkeit und Outcome zu optimieren. Wichtig ist die Ermittlung der zu erwartenden Ursprungsregion der klinischen VES anhand eines 12-Kanal-EKGs. Dabei ist eine hohe Anzahl spontaner VES mit einem besseren Outcome während und nach Prozedur assoziiert. Medikamentöse Provokationsmanöver sind möglich. Mit der Weiterentwicklung hochauflösender Mapping-Systeme hat sich die Genauigkeit und Effizienz des Mappings in den letzten Jahren stark verbessert. Mittlerweile gibt es Systeme, die automatisiert eine gleichzeitige Nutzung und Integration verschiedener Mapping-Informationen ermöglichen. Voltage‑, Aktivierungs- und Pace-Maps finden heute in der klinischen Praxis Anwendung. Ziel des Aktivierungs-Mappings ist es, den Ort der frühesten Aktivierung zu identifizieren; dieses Verfahren ist sehr genau, ist aber von einer hohen Anzahl spontaner VES abhängig. Beim Pace-Mapping wird mittels Stimulation der Zielort identifiziert, an dem der stimulierte QRS-Komplex der klinischen VES gleicht. Zur VES-Ablation wird heute meist eine Kombination der beiden Verfahren genutzt. Während das Voltage-Mapping vor allem bei Patienten mit strukturellen Herzerkrankungen und substratassoziierten anhaltenden Tachykardien eine Rolle spielt, sind Aktivierungs- und Pace-Mapping die erste Wahl zum VES-Mapping.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Bansch D, Oyang F, Antz M et al (2003) Successful catheter ablation of electrical storm after myocardial infarction. Circulation 108:3011–3016

    Article  Google Scholar 

  2. 2.

    Baser K, Bas HD, Yokokawa M et al (2014) Infrequent intraprocedural premature ventricular complexes: implications for ablation outcome. J Cardiovasc Electrophysiol 25:1088–1092

    Article  Google Scholar 

  3. 3.

    Bhakta D, Miller JM (2008) Principles of electroanatomic mapping. Indian Pacing Electrophysiol J 8:32–50

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Calvo N, Jongbloed M, Zeppenfeld K (2013) Radiofrequency catheter ablation of idiopathic right ventricular outflow tract arrhythmias. Indian Pacing Electrophysiol J 13:14–33

    Article  Google Scholar 

  5. 5.

    Cantwell CD, Roney CH, Ng FS et al (2015) Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping. Comput Biol Med 65:229–242

    CAS  Article  Google Scholar 

  6. 6.

    Cheniti G, Vlachos K, Meo M et al (2018) Mapping and ablation of idiopathic ventricular fibrillation. Front Cardiovasc Med 5:123

    Article  Google Scholar 

  7. 7.

    Cronin EM, Bogun FM, Maury P et al (2020) 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol 59:81–133

    Article  Google Scholar 

  8. 8.

    Dharmaprani D, Lahiri A, Ganesan AN et al (2020) Comparative spatial resolution of 12-lead electrocardiography and an automated algorithm. Heart Rhythm 17:324–331

    Article  Google Scholar 

  9. 9.

    Goyal R, Harvey M, Daoud EG et al (1996) Effect of coupling interval and pacing cycle length on morphology of paced ventricular complexes. Implications for pace mapping. Circulation 94:2843–2849

    CAS  Article  Google Scholar 

  10. 10.

    Haissaguerre M, Shah DC, Jais P et al (2002) Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet 359:677–678

    Article  Google Scholar 

  11. 11.

    Hasebe H, Yoshida K, Furuyashiki Y et al (2020) Oral caffeine intake amplifies the effect of isoproterenol in patients with frequent premature ventricular contractions. Europace 22:1261–1269

    Article  Google Scholar 

  12. 12.

    Heeger CH, Hayashi K, Kuck KH et al (2016) Catheter ablation of idiopathic ventricular arrhythmias arising from the cardiac outflow tracts- recent insights and techniques for the successful treatment of common and challenging cases. Circ J 80:1073–1086

    Article  Google Scholar 

  13. 13.

    Iwai S, Markowitz SM, Stein KM et al (2002) Response to adenosine differentiates focal from macroreentrant atrial tachycardia: validation using three-dimensional electroanatomic mapping. Circulation 106:2793–2799

    CAS  Article  Google Scholar 

  14. 14.

    Jadonath RL, Schwartzman DS, Preminger MW et al (1995) Utility of the 12-lead electrocardiogram in localizing the origin of right ventricular outflow tract tachycardia. Am Heart J 130:1107–1113

    CAS  Article  Google Scholar 

  15. 15.

    Kadish AH, Childs K, Schmaltz S et al (1991) Differences in QRS configuration during unipolar pacing from adjacent sites: implications for the spatial resolution of pace-mapping. J Am Coll Cardiol 17:143–151

    CAS  Article  Google Scholar 

  16. 16.

    Kim YH, Chen SA, Ernst S et al (2020) 2019 APHRS expert consensus statement on three-dimensional mapping systems for tachycardia developed in collaboration with HRS, EHRA, and LAHRS. J Arrhythm 36:215–270

    Article  Google Scholar 

  17. 17.

    Koester C, Ibrahim AM, Cancel M et al (2020) The ubiquitous premature ventricular complex. Cureus 12:e6585

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kuteszko R, Pytkowski M, Farkowski MM et al (2015) Utility of automated template matching for the interpretation of pace mapping in patients ablated due to outflow tract ventricular arrhythmias. Europace 17:1428–1434

    Article  Google Scholar 

  19. 19.

    Lee GK, Klarich KW, Grogan M et al (2012) Premature ventricular contraction-induced cardiomyopathy: a treatable condition. Circ Arrhythm Electrophysiol 5:229–236

    Article  Google Scholar 

  20. 20.

    Ling Z, Liu Z, Su L et al (2014) Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: prospective randomized study. Circ Arrhythm Electrophysiol 7:237–243

    CAS  Article  Google Scholar 

  21. 21.

    Maggioni AP, Zuanetti G, Franzosi MG et al (1993) Prevalence and prognostic significance of ventricular arrhythmias after acute myocardial infarction in the fibrinolytic era. GISSI‑2 results. Circulation 87:312–322

    CAS  Article  Google Scholar 

  22. 22.

    Movsowitz C, Schwartzman D, Callans DJ et al (1996) Idiopathic right ventricular outflow tract tachycardia: narrowing the anatomic location for successful ablation. Am Heart J 131:930–936

    CAS  Article  Google Scholar 

  23. 23.

    Ouyang F, Mathew S, Wu S et al (2014) Ventricular arrhythmias arising from the left ventricular outflow tract below the aortic sinus cusps: mapping and catheter ablation via transseptal approach and electrocardiographic characteristics. Circ Arrhythm Electrophysiol 7:445–455

    Article  Google Scholar 

  24. 24.

    Ptaszek LM, Moon B, Rozen G et al (2018) Novel automated point collection software facilitates rapid, high-density electroanatomical mapping with multiple catheter types. J Cardiovasc Electrophysiol 29:186–195

    Article  Google Scholar 

  25. 25.

    Shah DC, Jais P, Haissaguerre M et al (1997) Three-dimensional mapping of the common atrial flutter circuit in the right atrium. Circulation 96:3904–3912

    CAS  Article  Google Scholar 

  26. 26.

    Stec S, Sikorska A, Zaborska B et al (2012) Benign symptomatic premature ventricular complexes: short- and long-term efficacy of antiarrhythmic drugs and radiofrequency ablation. Kardiol Pol 70:351–358

    PubMed  Google Scholar 

  27. 27.

    Takemoto M, Yoshimura H, Ohba Y et al (2005) Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease. J Am Coll Cardiol 45:1259–1265

    Article  Google Scholar 

  28. 28.

    Yamada T, Kumar V, Yoshida N et al (2019) Eccentric activation patterns in the left ventricular outflow tract during idiopathic ventricular arrhythmias originating from the left ventricular summit: a pitfall for predicting the sites of ventricular arrhythmia origins. Circ Arrhythm Electrophysiol 12:e7419

    Article  Google Scholar 

  29. 29.

    Yamada T, Mcelderry HT, Doppalapudi H et al (2010) Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation. Circ Arrhythm Electrophysiol 3:616–623

    Article  Google Scholar 

  30. 30.

    Yarlagadda RK, Iwai S, Stein KM et al (2005) Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 112:1092–1097

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sebastian Dittrich.

Ethics declarations

Conflict of interest

S. Dittrich, A. Sultan, J. Lüker, and D. Steven declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dittrich, S., Sultan, A., Lüker, J. et al. Mapping strategies for premature ventricular contractions—activation, voltage, and/or pace map. Herzschr Elektrophys (2021).

Download citation


  • Ventricular premature complexes
  • Catheter ablation
  • Cardiac arrhythmias
  • High-resolution mapping
  • Ventricular fibrillation


  • Ventrikuläre Extrasystolen
  • Katheterablation
  • Herzrhythmusstörungen
  • Hochauflösendes Mapping
  • Kammerflimmern