Skip to main content

Innovationen in der invasiven Elektrophysiologie

Was erwartet uns?

Innovations in invasive electrophysiology

What awaits us?

Zusammenfassung

Die technologische Entwicklung der perkutanen Katheterablation zur Behandlung von Herzrhythmusstörungen hat sich von der initialen Anwendung von Gleichstrom-Schockabgaben über die Einführung der Hochfrequenzstromablation zu einem klinischen Routineverfahren entwickelt. Die invasive Elektrophysiologie zeichnet sich durch kontinuierliche technische Innovationen und damit einhergehendes wachsendes Verständnis elektrophysiologischer Mechanismen aus. Eine Reihe technologischer Neuentwicklungen wie die Laserablation, die multipolare biphasische Ablation, der Kryoballon, die Messung des Anpressdrucks bei Ablation, das hochauflösende dreidimensionale (3-D) Mapping oder das Konzept von Rotoren als Ziel einer Vorhofflimmerablation waren große Hoffnungsträger. Trotz intensiver Fortschritte bleibt eine der wesentlichen Herausforderungen der Katheterablation das Erzielen chronischer gewebespezifischer transmuraler Läsionen sowie die Vermeidung von Kollateralschäden. Das Ziel dieses Reviews ist es, den aktuellen Stand der Katheterablation von supraventrikulären Tachykardien, Vorhofflimmern und ventrikulären Arrhythmien zu skizzieren und zukünftige innovative Therapieverfahren und -strategien zu diskutieren. In Anbetracht der intensiven Dynamik an Entwicklungen kann dieses Review nicht alle neuen Ansätze berücksichtigen, sondern wird vielmehr nur einige der vielversprechenden Innovationen hervorheben. Themen dieser Diskussion beinhalten: die Verwendung nichtfluoroskopischer Katheternavigation, die Einführung neuer Ablationswerkzeuge, die Entwicklung alternativer Energiequellen, die Integration neuer bildgebender Verfahren und die Etablierung neuer Ablationsstrategien.

Abstract

Technological developments in percutaneous catheter ablation for the treatment of cardiac arrhythmias have progressed from direct current shock ablation over the introduction of radiofrequency ablation to routine clinical procedures. Invasive electrophysiology is characterized by continuous technical innovation and an accompanying increasing understanding of underlying electrophysiologic mechanisms. A number of technical developments were promising, e.g., laser ablation, multipolar biphasic ablation, cryoballoon ablation, contact force, high density three-dimensional (3D) mapping, and the concept of rotors for atrial fibrillation ablation. Despite intense progress, one of the main challenges of catheter ablation is still the creation of tissue-specific chronic transmural lesions and avoidance of collateral damage. The purpose of this review is to present a status quo of catheter ablation of supraventricular tachycardia, atrial fibrillation, and ventricular tachycardia and to discuss future technical innovations and strategies. In the presence of the intense dynamic developments, this review can not consider all new approaches but will rather highlight some of the most promising innovations. Topics of discussion include the use of nonfluoroscopic catheter navigation, the introduction of new ablation tools, the development of alternative energy sources, the integration of new imaging modalities, and the establishment of novel ablation strategies.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. Brugada P, Kastritis DG, Arbelo E, Arribas F, Bax JJ, Blomström-Lundqvist C et al (2020) 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. Eur Heart J 41:655–720

    Article  Google Scholar 

  2. Sawan N, Eitel C, Thiele H, Tilz R (2016) Ablation of supraventricular tachycardias: complications and emergencies. Herzschrittmacherther Elektrophysiol 27:143–150

    CAS  Article  Google Scholar 

  3. Voss F, Eckardt L, Busch S, Estner HL, Steven D, Sommer P et al (2016) AV-reentrant tachycardia and Wolff-Parkinson-White syndrome: diagnosis and treatment. Herzschrittmacherther Elektrophysiol 27:381–389

    Article  Google Scholar 

  4. Sommer P, Piorkowski C, Gaspar T, Eitel C, Derndorfer M, Martinek M et al (2013) MediGuide in supraventricular tachycardia: intial experience from a multicentre registry. Europace 15:1292–1297

    Article  Google Scholar 

  5. Sommer P, Rolf S, Richter S, Hindricks G, Piorkowski C (2012) Non-fluoroscopic catheter tracking: the MediGuideTM. Herzschrittmacherther Elektrophysiol 23:289–295

    Article  Google Scholar 

  6. Ellermann C, Frommeyer G, Eckardt L (2018) High-resolution 3D mappng: opportunities and limitations of the RhyhtmiaTM mapping system. Herzschrittmacherther Elektrophysiol 29:284–292

    Article  Google Scholar 

  7. Schaeffer B, Akbulak RÖ, Jularic M, Moser J, Eickohlt C, Scharzl JM, Klatt N et al (2019) High-density mapping and ablation of primary nonfocal left atrial tachycardia: characterizing a distinct arrhythmogenic substrate. JACC Clin Electrophysiol 5:417–426

    Article  Google Scholar 

  8. Eckardt L, Formmeyer G, Sommer P, Steven D, Deneke T, Estner HL et al (2018) Updated survey on interventional eletrophysiology: 5‑year follow-up of infrastructure, procedures, and training positions in Germany. HACC Clin Electrophysiol 4:820–827

    Article  Google Scholar 

  9. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadeu B et al (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37:2893–2962

    Article  Google Scholar 

  10. Kuck KH, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KRJ et al (2016) Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med 374:2235–2245

    Article  Google Scholar 

  11. Andrade JG, Champagne J, Dubuc M, Deyell MW, Verma A, Macle L et al (2019) Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation 140:1779–1778

    Article  Google Scholar 

  12. Kuck KH, Albenque JP, Chun KRJ, Fürnkranz A, Busch M, Elvan A et al (2019) Repeat ablation for atrial firbillation recurrence post cryoballoon or radiofrequency ablation in the FIRE AND ICE trial. Circ Arrhythm Electrophysiol 12:e7247

    CAS  PubMed  Google Scholar 

  13. Leitz P, Mönnig G, Güner F, Dechering DG, Wasmer K, Reinke F et al (2018) Comparing learning curves of two established “single-shot” devices for ablation of atrial fibrillation. J Interv Card Electrophysiol 53:317–322

    Article  Google Scholar 

  14. Reddy VY, Schilling R, Grimaldi M, Horton R, Natale A, Riva S et al (2019) Pulmonary vein isolation with a novel multielectrode radiogfrequency balloon catheter that allows directionally tailored energy delivery: short-term outcomes from a multicenter first-in-human study (RADIANCE). Circ Arrhythm Electrophysiol 12:e7541

    Article  Google Scholar 

  15. Dhillon GS, Honarbakhsh S, Di Monaco A, Coling AE, Lenka K, Pizzamiglio F et al (2020) Use of a multi-electrode radiofrequency balloon catheter to achieve pulmonary vein isolation in patients with paroxysmal atrial fibrillation: 12-month outcomes in the RADIANCE study. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.14476

    Article  PubMed  Google Scholar 

  16. Kottkamp H, Hindricks G, Pönisch C, Bertagnolli L, Moser F, Hilbert S et al (2019) Global multielectrode contact-mapping plus ablation with a single catheter in patients with atrial fibrillation: global AF study. J Cardiovasc Electrophysiol 30:2248–2255

    Article  Google Scholar 

  17. Winkle RA, Mohanty S, Patrawala RA, Mead RH, Kong MH, Engel G et al (2019) Low complication rates using high power (45–50 W) for short duration for atrial fibrillation ablations. Heart Rhythm 16:165–169

    Article  Google Scholar 

  18. Kottmaier M, Popa M, Bourier F, Reents T, Cifuentes J, Semmler V et al (2020) Safety and outcome of very high-power short-duration ablation using 70 W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Europace 22:388–393

    Article  Google Scholar 

  19. Yavin HD, Leshem E, Shapira-Daniels A, Sroubek J, Barkagan M, Haffajee CI et al (2020) Impact of high-power short-duration radiofrequency ablation on long-term lesion durability for atrial fibrillation ablation. JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2020.04.023

    Article  PubMed  Google Scholar 

  20. Reddy VY, Grimaldi M, De Potter T, Vijgen JM, Bulava A, Duytschaever MF et al (2019) Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial. JACC Clin Electrophysiol 5:778–786

    Article  Google Scholar 

  21. Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H et al (2019) Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol 74:315–326

    Article  Google Scholar 

  22. Reddy VY, Anter E, Rackauskas G, Peichl P, Koruth JS, Petru J et al (2020) A lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.120.008718

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanawuttiwat T, Nazarian S, Calkins H (2016) The role of catheter ablation in the management of ventricular tachycardia. Eur Heart J 37:594–609

    Article  Google Scholar 

  24. Soto-Iglesias D, Penela D, Jáuregui B, Acosta J, Fernández-Armenta J, Linhart M et al (2020) Cardiac magnetic resonance-guided ventricular tachycardia substrate ablation. JACC Clin Electrophysiol 6:436–447

    Article  Google Scholar 

  25. Robinson CG, Samson PP, Moore KMS, Hugo GD, Knutson N, Mutic S et al (2019) Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation 139:313–321

    Article  Google Scholar 

  26. Aziz Z, Shatz D, Rraiman M, Upadhyay GA, Beaser AD, Besser SA et al (2019) Targeted ablation of ventricular tachycardia guided by wavefront discontinuities during sinus rhythm: a new functional substrate mapping strategy. Circulation 140:1383–1397

    Article  Google Scholar 

  27. Stevenson WG, Tedrow UB, Reddy V, AbdelWahab A, Dukkipati S, John RM et al (2019) Infusion needle radiofrequency ablation for treatment of refractory ventricular arrhythmias. J Am Coll Cardiol 73:1413–1425

    Article  Google Scholar 

  28. Koruth JS, Kuroki K, Iwasawa J, Viswanathan R, Borse R, Buck ED et al (2020) Endocardiacl ventricular pulsed field ablation: a proof-of-concept preclinical evaluation. Europace 22:434–439

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Müller or Lars Eckardt.

Ethics declarations

Interessenkonflikt

P. Müller und L. Eckardt geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, P., Eckardt, L. Innovationen in der invasiven Elektrophysiologie. Herzschr Elektrophys 31, 362–367 (2020). https://doi.org/10.1007/s00399-020-00704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-020-00704-9

Schlüsselwörter

  • Herzrhythmusstörungen
  • Katheterablation
  • Pulsed field ablation
  • Isochronales spätes Aktivierungsmapping
  • Dreidimensionales Mapping

Keywords

  • Arrhythmia
  • Catheter ablation
  • Pulsed field ablation
  • Isochronal late activation mapping
  • Three-dimensional mapping